Alexander Nathan S, Katayama Kota, Sun Wenyu, Salom David, Gulati Sahil, Zhang Jianye, Mogi Muneto, Palczewski Krzysztof, Jastrzebska Beata
From the Department of Pharmacology, School of Medicine and.
Polgenix Inc., Cleveland, Ohio 44106, and.
J Biol Chem. 2017 Jun 30;292(26):10983-10997. doi: 10.1074/jbc.M117.780478. Epub 2017 May 9.
Phototransduction is initiated when the absorption of light converts the 11--retinal chromophore to its all- configuration in both rod and cone vertebrate photoreceptors. To sustain vision, 11--retinal is continuously regenerated from its all- conformation through a series of enzymatic steps comprising the "visual or retinoid" cycle. Abnormalities in this cycle can compromise vision because of the diminished supply of 11--retinal and the accumulation of toxic, constitutively active opsin. As shown previously for rod cells, attenuation of constitutively active opsin can be achieved with the unbleachable analogue, 11--6-membered ring (11--6mr)-retinal, which has therapeutic effects against certain degenerative retinal diseases. However, to discern the molecular mechanisms responsible for this action, pigment regeneration with this locked retinal analogue requires delineation also in cone cells. Here, we compared the regenerative properties of rod and green cone opsins with 11--6mr-retinal and demonstrated that this retinal analogue could regenerate rod pigment but not green cone pigment. Based on structural modeling suggesting that Pro-205 in green cone opsin could prevent entry and binding of 11--6mr-retinal, we initially mutated this residue to Ile, the corresponding residue in rhodopsin. However, this substitution did not enable green cone opsin to regenerate with 11--6mr-retinal. Interestingly, deletion of 16 N-terminal amino acids in green cone opsin partially restored the binding of 11--6mr-retinal. These results and our structural modeling indicate that a more complex binding pathway determines the regeneration of mammalian green cone opsin with chromophore analogues such as 11--6mr-retinal.
在脊椎动物的视杆和视锥光感受器中,当光的吸收将11-顺式视黄醛发色团转化为全反式构型时,光转导过程启动。为了维持视觉,11-顺式视黄醛通过一系列构成“视觉或类视黄醇”循环的酶促步骤,从其全反式构象持续再生。该循环中的异常会损害视觉,因为11-顺式视黄醛供应减少以及有毒的、组成型活性视蛋白积累。如先前在视杆细胞中所示,组成型活性视蛋白的衰减可以通过不可漂白类似物11-六元环(11-6mr)-视黄醛实现,其对某些视网膜退行性疾病具有治疗作用。然而,为了弄清这种作用的分子机制,还需要在视锥细胞中描绘这种锁定视黄醛类似物的色素再生情况。在这里,我们比较了视杆和绿色视锥视蛋白与11-6mr-视黄醛的再生特性,证明这种视黄醛类似物可以再生视杆色素,但不能再生绿色视锥色素。基于结构建模表明绿色视锥视蛋白中的Pro-205可能会阻止11-6mr-视黄醛的进入和结合,我们最初将该残基突变为视紫红质中的相应残基异亮氨酸。然而,这种取代并不能使绿色视锥视蛋白与11-6mr-视黄醛再生。有趣的是,绿色视锥视蛋白中16个N端氨基酸的缺失部分恢复了与11-6mr-视黄醛的结合。这些结果以及我们的结构建模表明,一个更复杂的结合途径决定了哺乳动物绿色视锥视蛋白与发色团类似物如11-6mr-视黄醛的再生。