Vaissier Valerie, Van Voorhis Troy
Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, U.S.A.
Essays Biochem. 2017 May 9;61(2):293-303. doi: 10.1042/EBC20160079.
The mechanism by which [NiFe] hydrogenase catalyses the oxidation of molecular hydrogen is a significant yet challenging topic in bioinorganic chemistry. With far-reaching applications in renewable energy and carbon mitigation, significant effort has been invested in the study of these complexes. In particular, computational approaches offer a unique perspective on how this enzyme functions at an electronic and atomistic level. In this article, we discuss state-of-the art quantum chemical methods and how they have helped deepen our comprehension of [NiFe] hydrogenase. We outline the key strategies that can be used to compute the (i) geometry, (ii) electronic structure, (iii) thermodynamics and (iv) kinetic properties associated with the enzymatic activity of [NiFe] hydrogenase and other bioinorganic complexes.
[NiFe]氢化酶催化分子氢氧化的机制是生物无机化学中一个重要但具有挑战性的课题。由于在可再生能源和碳减排方面具有深远的应用,人们在这些配合物的研究上投入了大量精力。特别是,计算方法为该酶在电子和原子水平上的功能提供了独特的视角。在本文中,我们讨论了当前的量子化学方法,以及它们如何有助于加深我们对[NiFe]氢化酶的理解。我们概述了可用于计算与[NiFe]氢化酶和其他生物无机配合物的酶活性相关的(i)几何结构、(ii)电子结构、(iii)热力学和(iv)动力学性质的关键策略。