Suppr超能文献

抗真菌多烯糖基化的重新设计:二糖修饰 NPP 的工程生物合成。

Redesign of antifungal polyene glycosylation: engineered biosynthesis of disaccharide-modified NPP.

机构信息

Department of Biological Engineering, Inha University, Incheon, 22212, South Korea.

出版信息

Appl Microbiol Biotechnol. 2017 Jun;101(12):5131-5137. doi: 10.1007/s00253-017-8303-8. Epub 2017 May 9.

Abstract

Polyene macrolides such as nystatin A1 and amphotericin B have been known to be potent antifungal antibiotics for several decades. Because the therapeutic application of polyenes is restricted by severe side effects such as nephrotoxicity, various chemical and biological studies to modify the polyene structure have been conducted to develop less-toxic polyene antifungals. A newly discovered nystatin-like polyene compound NPP was shown to contain an aglycone that was identical to nystatin but harbored a unique di-sugar moiety, mycosaminyl-N-acetyl-glucosamine, which led to higher solubility and reduced hemolytic toxicity. Additionally, a NPP-specific second sugar extending gene, nppY, was recently identified to be responsible for the transfer of a second sugar, N-acetyl-glucosamine, in NPP biosynthesis. In this study, we investigated biosynthesis of the glycoengineered NPP analog through genetic manipulation of the NPP A1 producer, Pseudonocardia autotrophica KCTC9441. NypY is another second sugar glycosyltransferase produced by Pseudonocardia sp. P1 that is responsible for the transfer of a mannose to the mycosaminyl sugar residue of nystatin. We blocked the transfer of a second sugar through nppY disruption, then expressed nypY in P. autotrophica △nppY mutant strain. When compared with nystain A1 and NPP A1, the newly engineered mannosylated NPP analog showed reduced in vitro antifungal activity, while exhibiting higher nephrotoxical activities against human hepatocytes. These results suggest for the first time that not only the number of sugar residues but also the type of extended second sugar moiety could affect biological activities of polyene macrolides.

摘要

多烯大环内酯类抗生素,如制霉菌素 A1 和两性霉素 B,几十年来一直被认为是有效的抗真菌抗生素。由于多烯类药物的治疗应用受到严重副作用(如肾毒性)的限制,因此进行了各种化学和生物学研究来修饰多烯类结构,以开发毒性较低的多烯类抗真菌药物。最近发现的一种新型制霉菌素样多烯化合物 NPP 含有与制霉菌素相同的糖苷配基,但含有独特的二糖部分,即肌醇-N-乙酰葡萄糖胺,这导致其具有更高的溶解度和降低的溶血毒性。此外,最近还确定了一个 NPP 特异性的第二个糖延伸基因 nppY,负责在 NPP 生物合成中转移第二个糖,N-乙酰葡萄糖胺。在这项研究中,我们通过遗传操作 NPP A1 产生菌,即拟诺卡氏菌 KCTC9441,研究了糖基工程化 NPP 类似物的生物合成。NypY 是另一种由假诺卡氏菌 P1 产生的第二个糖糖基转移酶,负责将甘露糖转移到制霉菌素的肌醇糖残基上。我们通过 nppY 敲除阻断了第二个糖的转移,然后在 P. autotrophica △nppY 突变株中表达了 nypY。与制霉菌素 A1 和 NPP A1 相比,新设计的甘露糖基化 NPP 类似物的体外抗真菌活性降低,但对人肝细胞的肾毒性活性更高。这些结果首次表明,不仅糖残基的数量,而且延伸的第二个糖部分的类型都可能影响多烯大环内酯类抗生素的生物学活性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验