Suppr超能文献

土壤有机质分解的因果机制:分解沿海湿地盐度和淹没的影响。

Causal mechanisms of soil organic matter decomposition: deconstructing salinity and flooding impacts in coastal wetlands.

机构信息

Wetland and Aquatic Research Center, U.S. Geological Survey, Lafayette, Louisiana, 70506, USA.

Baruch Institute of Coastal Ecology and Forest Science, Clemson University, Georgetown, South Carolina, 29442, USA.

出版信息

Ecology. 2017 Aug;98(8):2003-2018. doi: 10.1002/ecy.1890. Epub 2017 Jun 28.

Abstract

Coastal wetlands significantly contribute to global carbon storage potential. Sea-level rise and other climate-change-induced disturbances threaten coastal wetland sustainability and carbon storage capacity. It is critical that we understand the mechanisms controlling wetland carbon loss so that we can predict and manage these resources in anticipation of climate change. However, our current understanding of the mechanisms that control soil organic matter decomposition, in particular the impacts of elevated salinity, are limited, and literature reports are contradictory. In an attempt to improve our understanding of these complex processes, we measured root and rhizome decomposition and developed a causal model to identify and quantify the mechanisms that influence soil organic matter decomposition in coastal wetlands that are impacted by sea-level rise. We identified three causal pathways: (1) a direct pathway representing the effects of flooding on soil moisture, (2) a direct pathway representing the effects of salinity on decomposer microbial communities and soil biogeochemistry, and (3) an indirect pathway representing the effects of salinity on litter quality through changes in plant community composition over time. We used this model to test the effects of alternate scenarios on the response of tidal freshwater forested wetlands and oligohaline marshes to short- and long-term climate-induced disturbances of flooding and salinity. In tidal freshwater forested wetlands, the model predicted less decomposition in response to drought, hurricane salinity pulsing, and long-term sea-level rise. In contrast, in the oligohaline marsh, the model predicted no change in response to drought and sea-level rise, and increased decomposition following a hurricane salinity pulse. Our results show that it is critical to consider the temporal scale of disturbance and the magnitude of exposure when assessing the effects of salinity intrusion on carbon mineralization in coastal wetlands. Here, we identify three causal mechanisms that can reconcile disparities between long-term and short-term salinity impacts on organic matter decomposition.

摘要

滨海湿地对全球碳储存潜力有重要贡献。海平面上升和其他气候变化引起的干扰威胁着滨海湿地的可持续性和碳储存能力。了解控制湿地碳损失的机制至关重要,以便我们能够预测和管理这些资源,以应对气候变化。然而,我们对控制土壤有机质分解的机制,特别是在盐分升高的情况下的影响的理解是有限的,文献报道也存在矛盾。为了更好地理解这些复杂的过程,我们测量了根系和根茎的分解,并建立了一个因果模型,以确定和量化受海平面上升影响的滨海湿地中控制土壤有机质分解的机制。我们确定了三个因果途径:(1)直接途径,代表洪水对土壤水分的影响;(2)直接途径,代表盐分对分解者微生物群落和土壤生物地球化学的影响;(3)间接途径,代表盐分通过植物群落组成的随时间变化对凋落物质量的影响。我们使用该模型测试了替代方案对潮汐淡水森林湿地和寡盐沼对洪水和盐分短期和长期气候变化干扰的响应的影响。在潮汐淡水森林湿地中,模型预测干旱、飓风盐脉冲和长期海平面上升会导致分解减少。相比之下,在寡盐沼中,模型预测干旱和海平面上升不会导致分解变化,而飓风盐脉冲后分解会增加。我们的研究结果表明,在评估盐分入侵对滨海湿地碳矿化的影响时,考虑干扰的时间尺度和暴露程度至关重要。在这里,我们确定了三个因果机制,可以协调长期和短期盐分对有机质分解影响之间的差异。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验