Suppr超能文献

盐度、氧化还原状态和胶体对沿海湿地土壤温室气体产生及碳迁移的交互作用。

Interactive effects of salinity, redox, and colloids on greenhouse gas production and carbon mobility in coastal wetland soils.

作者信息

Ward Nicholas D, Bowe Madison, Muller Katherine A, Chen Xingyuan, Zhao Qian, Chu Rosalie, Cheng Zezhen, Wietsma Thomas W, Kukkadapu Ravi K

机构信息

Coastal Sciences Division, Pacific Northwest National Laboratory, Sequim, Washington, United States of America.

School of Oceanography, University of Washington, Seattle, Washington, United States of America.

出版信息

PLoS One. 2024 Dec 30;19(12):e0316341. doi: 10.1371/journal.pone.0316341. eCollection 2024.

Abstract

Coastal wetlands, including freshwater systems near large lakes, rapidly bury carbon, but less is known about how they transport carbon either to marine and lake environments or to the atmosphere as greenhouse gases (GHGs) such as carbon dioxide and methane. This study examines how GHG production and organic matter (OM) mobility in coastal wetland soils vary with the availability of oxygen and other terminal electron acceptors. We also evaluated how OM and redox-sensitive species varied across different size fractions: particulates (0.45-1μm), fine colloids (0.1-0.45μm), and nano particulates plus truly soluble (<0.1μm; NP+S) during 21-day aerobic and anaerobic slurry incubations. Soils were collected from the center of a freshwater coastal wetland (FW-C) in Lake Erie, the upland-wetland edge of the same wetland (FW-E), and the center of a saline coastal wetland (SW-C) in the Pacific Northwest, USA. Anaerobic methane production for FW-E soils were 47 and 27,537 times greater than FW-C and SW-C soils, respectively. High Fe2+ and dissolved sulfate concentrations in FW-C and SW-C soils suggest that iron and/or sulfate reduction inhibited methanogenesis. Aerobic CO2 production was highest for both freshwater soils, which had a higher proportion of OM in the NP+S fraction (64±28% and 70±10% for FW-C and FW-E, respectively) and organic C:N ratios reflective of microbial detritus (5.3±5.3 and 5.3±7.0 for FW-E and FW-C, respectively) compared to SW-C, which had a higher fraction of particulate (58±9%) and fine colloidal (19±7%) OM and organic C:N ratios reflective of vegetation detritus (11.4 ± 1.7). The variability in GHG production and shifts in OM size fractionation and composition observed across freshwater and saline soils collected within individual and across different sites reinforce the high spatial variability in the processes controlling OM stability, mobility, and bioavailability in coastal wetland soils.

摘要

沿海湿地,包括大型湖泊附近的淡水系统,能迅速埋藏碳,但对于它们如何将碳输送到海洋和湖泊环境,或者作为二氧化碳和甲烷等温室气体排放到大气中,人们了解得较少。本研究考察了沿海湿地土壤中温室气体的产生以及有机物质(OM)的迁移如何随氧气和其他终端电子受体的可利用性而变化。我们还评估了在21天的好氧和厌氧泥浆培养过程中,不同粒径组分(颗粒(0.45 - 1μm)、细胶体(0.1 - 0.45μm)以及纳米颗粒加真正可溶物(<0.1μm;NP + S))中OM和对氧化还原敏感的物质是如何变化的。土壤样本采集自美国俄亥俄州伊利湖一个淡水沿海湿地(FW - C)的中心、同一湿地的高地 - 湿地边缘(FW - E)以及美国太平洋西北部一个盐沼沿海湿地(SW - C)的中心。FW - E土壤的厌氧甲烷产量分别比FW - C和SW - C土壤高47倍和27537倍。FW - C和SW - C土壤中高浓度的Fe2 + 和溶解态硫酸盐表明,铁还原和/或硫酸盐还原抑制了甲烷生成。两种淡水土壤的好氧二氧化碳产量最高,与SW - C相比,它们在NP + S组分中的OM比例更高(FW - C和FW - E分别为64±28%和70±10%),且有机碳氮比反映出微生物残体的特征(FW - E和FW - C分别为5.3±5.3和5.3±7.0),而SW - C中颗粒态(58±9%)和细胶体态(19±7%)OM的比例更高,有机碳氮比反映出植被残体的特征(11.4±1.7)。在单个地点内以及不同地点采集的淡水和盐沼土壤中观察到的温室气体产生的变异性以及OM粒径分级和组成的变化,强化了沿海湿地土壤中控制OM稳定性、迁移性和生物可利用性的过程具有高度空间变异性这一观点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24a3/11684665/30a351310ebf/pone.0316341.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验