Cervantes-Sandoval Isaac, Phan Anna, Chakraborty Molee, Davis Ronald L
Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, United States.
Elife. 2017 May 10;6:e23789. doi: 10.7554/eLife.23789.
Current thought envisions dopamine neurons conveying the reinforcing effect of the unconditioned stimulus during associative learning to the axons of mushroom body Kenyon cells for normal olfactory learning. Here, we show using functional GFP reconstitution experiments that Kenyon cells and dopamine neurons from axoaxonic reciprocal synapses. The dopamine neurons receive cholinergic input via nicotinic acetylcholine receptors from the Kenyon cells; knocking down these receptors impairs olfactory learning revealing the importance of these receptors at the synapse. Blocking the synaptic output of Kenyon cells during olfactory conditioning reduces presynaptic calcium transients in dopamine neurons, a finding consistent with reciprocal communication. Moreover, silencing Kenyon cells decreases the normal chronic activity of the dopamine neurons. Our results reveal a new and critical role for positive feedback onto dopamine neurons through reciprocal connections with Kenyon cells for normal olfactory learning.
目前的观点认为,在联想学习过程中,多巴胺神经元将无条件刺激的强化作用传递给蘑菇体肯扬细胞的轴突,以实现正常的嗅觉学习。在此,我们通过功能性绿色荧光蛋白重组实验表明,肯扬细胞和多巴胺神经元形成轴-轴反向突触。多巴胺神经元通过烟碱型乙酰胆碱受体从肯扬细胞接收胆碱能输入;敲低这些受体会损害嗅觉学习,揭示了这些受体在突触处的重要性。在嗅觉条件反射过程中阻断肯扬细胞的突触输出会减少多巴胺神经元的突触前钙瞬变,这一发现与反向通信一致。此外,沉默肯扬细胞会降低多巴胺神经元的正常慢性活动。我们的研究结果揭示了通过与肯扬细胞的反向连接对多巴胺神经元进行正反馈在正常嗅觉学习中的一个新的关键作用。