Institute of Chemistry and The Fritz Haber Research Center, The Hebrew University , Jerusalem 91904, Israel.
J Chem Theory Comput. 2017 Jun 13;13(6):2851-2857. doi: 10.1021/acs.jctc.7b00238. Epub 2017 Jun 1.
In processes involving aqueous solutions and in almost every biomolecular interaction, hydrogen bonds play important roles. Though weak compared to the covalent bond, hydrogen bonds modify the stability and conformation of numerous small and large molecules and modulate their intermolecular interactions. We propose a simple methodology for extracting hydrogen bond strength from atomistic level simulations. The free energy associated with hydrogen bond formation is conveniently calculated as the reversible work required to reshape a completely random pair probability distribution reference state into the one found in simulations where hydrogen bonds are formed. Requiring only the probability density distribution of donor-acceptor pairs in the first solvation shell of an electronegative atom, the method uniquely defines the free energy, entropy, and enthalpy of the hydrogen bond. The method can be easily extended to molecules other than water and to multiple component mixtures. We demonstrate and apply this methodology to hydrogen bonds that form in molecular dynamics simulations between water molecules in pure water, as well as to bonds formed between different molecules in a binary mixture of a sugar (trehalose) and water. Finally, we comment on how the method should be useful in assessing the role of hydrogen bonds in different molecular mechanisms.
在涉及水溶液的过程中和几乎每一种生物分子相互作用中,氢键都起着重要的作用。尽管氢键比共价键弱,但它可以改变许多小分子和大分子的稳定性和构象,并调节它们的分子间相互作用。我们提出了一种从原子水平模拟中提取氢键强度的简单方法。氢键形成的自由能可以方便地计算为将完全随机的供体-受体对概率分布参考状态重塑为在模拟中形成氢键时所发现的状态所需的可逆功。该方法仅要求电负性原子的第一溶剂化壳中供体-受体对的概率密度分布,从而唯一地定义了氢键的自由能、熵和焓。该方法可以很容易地扩展到除水以外的分子和多组分混合物。我们演示并应用了这种方法来研究纯水中水分子之间形成的氢键,以及在糖(海藻糖)和水的二元混合物中不同分子之间形成的键。最后,我们评论了该方法在评估氢键在不同分子机制中的作用方面应该是有用的。