Department of Physics, University of Washington, Seattle, WA-98195, USA.
Department of Electrical Engineering, University of Washington, Seattle, WA-98195, USA.
Sci Rep. 2017 May 10;7(1):1673. doi: 10.1038/s41598-017-01908-9.
Freeform optics aims to expand the toolkit of optical elements by allowing for more complex phase geometries beyond rotational symmetry. Complex, asymmetric curvatures are employed to enhance the performance of optical components while minimizing their size. Unfortunately, these high curvatures and complex forms are often difficult to manufacture with current technologies, especially at the micron scale. Metasurfaces are planar sub-wavelength structures that can control the phase, amplitude, and polarization of incident light, and can thereby mimic complex geometric curvatures on a flat, wavelength-scale thick surface. We present a methodology for designing analogues of freeform optics using a silicon nitride based metasurface platform for operation at visible wavelengths. We demonstrate a cubic phase plate with a point spread function exhibiting enhanced depth of field over 300 micron along the optical axis with potential for performing metasurface-based white light imaging, and an Alvarez lens with a tunable focal length range of over 2.5 mm corresponding to a change in optical power of ~1600 diopters with 100 micron of total mechanical displacement. The adaptation of freeform optics to a sub-wavelength metasurface platform allows for further miniaturization of optical components and offers a scalable route toward implementing near-arbitrary geometric curvatures in nanophotonics.
自由曲面光学旨在通过允许超出旋转对称的更复杂的相位几何形状来扩展光学元件的工具包。采用复杂的、非对称的曲率来增强光学元件的性能,同时最小化其尺寸。不幸的是,这些高曲率和复杂的形状通常很难用现有技术制造,尤其是在微米尺度上。超表面是平面亚波长结构,可以控制入射光的相位、幅度和偏振,从而可以在平坦的、波长尺度的厚表面上模拟复杂的几何曲率。我们提出了一种使用基于氮化硅的超表面平台设计自由曲面光学模拟的方法,用于可见光波段的操作。我们展示了一个具有立方相位板的点扩散函数,其在光轴上的景深超过 300 微米,具有进行基于超表面的白光成像的潜力,以及一个具有可调焦距范围的 Alvarez 透镜,其对应于 100 微米的总机械位移光学功率的约 1600 屈光度的变化。将自由曲面光学应用于亚波长超表面平台可以进一步实现光学元件的小型化,并为在纳米光子学中实现近任意几何曲率提供了一种可扩展的途径。