Department of Materials Science and Engineering, Stanford University , Stanford, California 94305, United States.
Nano Lett. 2018 Feb 14;18(2):1104-1109. doi: 10.1021/acs.nanolett.7b04646. Epub 2018 Jan 31.
Metasurfaces enable almost complete control of light through ultrathin, subwavelength surfaces by locally and abruptly altering the scattered phase. To date, however, all metasurfaces obey time-reversal symmetry, meaning that forward and backward traveling waves will trace identical paths when being reflected, refracted, or diffracted. Here, we use full-field calculations to design a passive metasurface for nonreciprocal transmission of both direct and anomalously refracted near-infrared light over nanoscale optical path lengths. The metasurface consists of a 100 nm-thick, periodically patterned Si slab. Owing to the high-quality-factor resonances of the metasurface and the inherent Kerr nonlinearities of Si, this structure acts as an optical diode for free-space optical signals. This structure also exhibits nonreciprocal anomalous refraction with appropriate patterning to form a phase gradient metasurface. Compared to existing schemes for breaking time-reversal symmetry, our platform enables subwavelength nonreciprocity for arbitrary free-space optical inputs and provides a straightforward path to experimental realization. The concept is also generalizable to other metasurface functions, providing a foundation for one-way lensing and holography.
超表面通过在亚波长表面上局部且急剧地改变散射相位,实现了对光的近乎完全控制。然而,迄今为止,所有超表面都遵循时间反演对称性,这意味着正向和反向传播的波在被反射、折射或衍射时将沿着相同的路径传播。在这里,我们使用全场计算设计了一种被动超表面,用于在纳米光学路径长度上对直接和异常折射的近红外光进行非互易透射。该超表面由 100nm 厚的周期性图案化硅片组成。由于超表面的高品质因数共振和硅的固有克尔非线性,该结构可作为自由空间光信号的光学二极管。该结构还表现出非互易异常折射,通过适当的图案化形成相位梯度超表面。与打破时间反演对称性的现有方案相比,我们的平台为任意自由空间光学输入实现了亚波长非互易性,并为实验实现提供了直接途径。该概念也可推广到其他超表面功能,为单向透镜和全息术提供了基础。