Suppr超能文献

非互易平面光学与硅超表面

Nonreciprocal Flat Optics with Silicon Metasurfaces.

机构信息

Department of Materials Science and Engineering, Stanford University , Stanford, California 94305, United States.

出版信息

Nano Lett. 2018 Feb 14;18(2):1104-1109. doi: 10.1021/acs.nanolett.7b04646. Epub 2018 Jan 31.

Abstract

Metasurfaces enable almost complete control of light through ultrathin, subwavelength surfaces by locally and abruptly altering the scattered phase. To date, however, all metasurfaces obey time-reversal symmetry, meaning that forward and backward traveling waves will trace identical paths when being reflected, refracted, or diffracted. Here, we use full-field calculations to design a passive metasurface for nonreciprocal transmission of both direct and anomalously refracted near-infrared light over nanoscale optical path lengths. The metasurface consists of a 100 nm-thick, periodically patterned Si slab. Owing to the high-quality-factor resonances of the metasurface and the inherent Kerr nonlinearities of Si, this structure acts as an optical diode for free-space optical signals. This structure also exhibits nonreciprocal anomalous refraction with appropriate patterning to form a phase gradient metasurface. Compared to existing schemes for breaking time-reversal symmetry, our platform enables subwavelength nonreciprocity for arbitrary free-space optical inputs and provides a straightforward path to experimental realization. The concept is also generalizable to other metasurface functions, providing a foundation for one-way lensing and holography.

摘要

超表面通过在亚波长表面上局部且急剧地改变散射相位,实现了对光的近乎完全控制。然而,迄今为止,所有超表面都遵循时间反演对称性,这意味着正向和反向传播的波在被反射、折射或衍射时将沿着相同的路径传播。在这里,我们使用全场计算设计了一种被动超表面,用于在纳米光学路径长度上对直接和异常折射的近红外光进行非互易透射。该超表面由 100nm 厚的周期性图案化硅片组成。由于超表面的高品质因数共振和硅的固有克尔非线性,该结构可作为自由空间光信号的光学二极管。该结构还表现出非互易异常折射,通过适当的图案化形成相位梯度超表面。与打破时间反演对称性的现有方案相比,我们的平台为任意自由空间光学输入实现了亚波长非互易性,并为实验实现提供了直接途径。该概念也可推广到其他超表面功能,为单向透镜和全息术提供了基础。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验