Suppr超能文献

不同凋落物类型及分解过程中灵活的碳利用效率部分补偿了养分失衡——来自分析化学计量模型的结果

Flexible Carbon-Use Efficiency across Litter Types and during Decomposition Partly Compensates Nutrient Imbalances-Results from Analytical Stoichiometric Models.

作者信息

Manzoni Stefano

机构信息

Department of Physical Geography, Stockholm UniversityStockholm, Sweden.

Bolin Centre for Climate Research, Stockholm UniversityStockholm, Sweden.

出版信息

Front Microbiol. 2017 Apr 26;8:661. doi: 10.3389/fmicb.2017.00661. eCollection 2017.

Abstract

Mathematical models involving explicit representations of microbial processes have been developed to infer microbial community properties from laboratory and field measurements. While this approach has been used to estimate the kinetic constants related to microbial activity, it has not been fully exploited for inference of stoichiometric traits, such as carbon-use efficiency (CUE). Here, a hierarchy of analytically-solvable mass-balance models of litter carbon (C) and nitrogen (N) dynamics is developed, to infer decomposer CUE from measured C and N contents during litter decomposition. The models are solved in the phase space-expressing litter remaining N as a function of remaining C-rather than in time, thus focusing on the stoichiometric relations during decomposition rather than the kinetics of degradation. This approach leads to explicit formulas that depend on CUE and other microbial properties, which can then be treated as model parameters and retrieved via nonlinear regression. CUE is either assumed time-invariant or as a function of the fraction of remaining litter C as a substitute for time. In all models, CUE tends to increase with increasing litter N availability across a range of litter types. When temporal trends in CUE are considered, CUE increases during decomposition of N-poor litter cohorts, in which decomposers are initially N-limited, but decreases in N-rich litter possibly due to C-limitation. These patterns of flexible CUE that partly compensate stoichiometric imbalances are robust to moderate shifts in decomposer C:N ratio and hold across wide climatic gradients.

摘要

已经开发出了涉及微生物过程明确表示的数学模型,用于从实验室和现场测量中推断微生物群落特性。虽然这种方法已被用于估计与微生物活性相关的动力学常数,但它尚未被充分用于推断化学计量特征,如碳利用效率(CUE)。在此,我们开发了一系列可解析求解的凋落物碳(C)和氮(N)动态质量平衡模型,以便根据凋落物分解过程中测得的C和N含量推断分解者的CUE。这些模型在相空间中求解,将相空间中的剩余N表示为剩余C的函数,而不是随时间变化,从而关注分解过程中的化学计量关系而非降解动力学。这种方法得出了依赖于CUE和其他微生物特性的显式公式,然后可以将这些特性视为模型参数并通过非线性回归进行检索。CUE要么被假定为时间不变,要么是剩余凋落物C比例的函数,以此作为时间的替代。在所有模型中,在一系列凋落物类型中,CUE往往会随着凋落物N可用性的增加而增加。当考虑CUE的时间趋势时,在贫N凋落物群落的分解过程中CUE会增加,其中分解者最初受到N限制,但在富N凋落物中CUE会降低,这可能是由于C限制。这些部分补偿化学计量失衡的灵活CUE模式对于分解者C:N比的适度变化具有鲁棒性,并且在广泛的气候梯度范围内都成立。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0757/5405148/43d08d12efeb/fmicb-08-00661-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验