Suppr超能文献

调控分子半导体中的有效自旋轨道耦合。

Tuning the effective spin-orbit coupling in molecular semiconductors.

机构信息

Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK.

Institute of Physics, Johannes Gutenberg-Universität, 55128 Mainz, Germany.

出版信息

Nat Commun. 2017 May 11;8:15200. doi: 10.1038/ncomms15200.

Abstract

The control of spins and spin to charge conversion in organics requires understanding the molecular spin-orbit coupling (SOC), and a means to tune its strength. However, quantifying SOC strengths indirectly through spin relaxation effects has proven difficult due to competing relaxation mechanisms. Here we present a systematic study of the g-tensor shift in molecular semiconductors and link it directly to the SOC strength in a series of high-mobility molecular semiconductors with strong potential for future devices. The results demonstrate a rich variability of the molecular g-shifts with the effective SOC, depending on subtle aspects of molecular composition and structure. We correlate the above g-shifts to spin-lattice relaxation times over four orders of magnitude, from 200 to 0.15 μs, for isolated molecules in solution and relate our findings for isolated molecules in solution to the spin relaxation mechanisms that are likely to be relevant in solid state systems.

摘要

有机体内自旋和自旋到电荷转换的控制需要了解分子自旋轨道耦合(SOC),并需要一种调节其强度的方法。然而,由于竞争的弛豫机制,通过自旋弛豫效应间接量化 SOC 强度一直很困难。在这里,我们对分子半导体中的 g 张量位移进行了系统研究,并将其与一系列具有未来器件应用潜力的高迁移率分子半导体中的 SOC 强度直接联系起来。结果表明,分子 g 位移与有效 SOC 之间存在丰富的可变性,这取决于分子组成和结构的细微方面。我们将上述 g 位移与溶液中孤立分子的自旋晶格弛豫时间相关联,该时间范围为 200 到 0.15 μs,跨越四个数量级,并将我们在溶液中孤立分子的发现与可能与固态系统相关的自旋弛豫机制相关联。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53d3/5437270/9cefcbc870c4/ncomms15200-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验