Chalub Fabio A C C, Souza Max O
Departamento de Matemática and Centro de Matemática e Aplicações, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516, Caparica, Portugal.
Departamento de Matemática Aplicada, Universidade Federal Fluminense, R. Mário Santos Braga, s/n, Niterói, RJ, 22240-920, Brasil.
J Math Biol. 2017 Dec;75(6-7):1735-1774. doi: 10.1007/s00285-017-1135-4. Epub 2017 May 10.
This work is a systematic study of discrete Markov chains that are used to describe the evolution of a two-types population. Motivated by results valid for the well-known Moran (M) and Wright-Fisher (WF) processes, we define a general class of Markov chains models which we term the Kimura class. It comprises the majority of the models used in population genetics, and we show that many well-known results valid for M and WF processes are still valid in this class. In all Kimura processes, a mutant gene will either fixate or become extinct, and we present a necessary and sufficient condition for such processes to have the probability of fixation strictly increasing in the initial frequency of mutants. This condition implies that there are WF processes with decreasing fixation probability-in contradistinction to M processes which always have strictly increasing fixation probability. As a by-product, we show that an increasing fixation probability defines uniquely an M or WF process which realises it, and that any fixation probability with no state having trivial fixation can be realised by at least some WF process. These results are extended to a subclass of processes that are suitable for describing time-inhomogeneous dynamics. We also discuss the traditional identification of frequency dependent fitnesses and pay-offs, extensively used in evolutionary game theory, the role of weak selection when the population is finite, and the relations between jumps in evolutionary processes and frequency dependent fitnesses.
这项工作是对用于描述两类种群演化的离散马尔可夫链的系统研究。受适用于著名的莫兰(M)和赖特 - 费希尔(WF)过程的结果的启发,我们定义了一类一般的马尔可夫链模型,我们称之为木村类。它包含了种群遗传学中使用的大多数模型,并且我们表明许多对M和WF过程有效的著名结果在这类模型中仍然有效。在所有木村过程中,一个突变基因要么固定要么灭绝,并且我们给出了此类过程在突变体初始频率下固定概率严格增加的充要条件。这个条件意味着存在固定概率递减的WF过程——这与总是具有严格递增固定概率的M过程形成对比。作为一个副产品,我们表明固定概率的增加唯一地定义了一个实现它的M或WF过程,并且任何没有状态具有平凡固定的固定概率至少可以由某些WF过程实现。这些结果被扩展到适合描述非齐次动力学的一类过程。我们还讨论了在进化博弈论中广泛使用的频率依赖适应度和收益的传统识别、种群有限时弱选择的作用以及进化过程中的跳跃与频率依赖适应度之间的关系。