Suppr超能文献

人口统计学波动下种群的固定概率。

Fixation probabilities in populations under demographic fluctuations.

作者信息

Czuppon Peter, Traulsen Arne

机构信息

Department of Evolutionary Theory, Max-Planck Institute for Evolutionary Biology, Plön, Germany.

出版信息

J Math Biol. 2018 Oct;77(4):1233-1277. doi: 10.1007/s00285-018-1251-9. Epub 2018 Jun 7.

Abstract

We study the fixation probability of a mutant type when introduced into a resident population. We implement a stochastic competitive Lotka-Volterra model with two types and intra- and interspecific competition. The model further allows for stochastically varying population sizes. The competition coefficients are interpreted in terms of inverse payoffs emerging from an evolutionary game. Since our study focuses on the impact of the competition values, we assume the same net growth rate for both types. In this general framework, we derive a formula for the fixation probability [Formula: see text] of the mutant type under weak selection. We find that the most important parameter deciding over the invasion success of the mutant is its death rate due to competition with the resident. Furthermore, we compare our approximation to results obtained by implementing population size changes deterministically in order to explore the parameter regime of validity of our method. Finally, we put our formula in the context of classical evolutionary game theory and observe similarities and differences to the results obtained in that constant population size setting.

摘要

我们研究了一种突变类型引入到常驻种群后的固定概率。我们实施了一个具有两种类型以及种内和种间竞争的随机竞争Lotka-Volterra模型。该模型进一步允许种群大小随机变化。竞争系数根据进化博弈中出现的反向收益来解释。由于我们的研究重点是竞争值的影响,我们假设两种类型具有相同的净增长率。在这个一般框架下,我们推导出了弱选择下突变类型固定概率[公式:见原文]的公式。我们发现,决定突变体入侵成功的最重要参数是其与常驻种群竞争导致的死亡率。此外,我们将我们的近似结果与通过确定性地实施种群大小变化所获得的结果进行比较,以探索我们方法的有效性参数范围。最后,我们将我们的公式置于经典进化博弈论的背景下,并观察与在恒定种群大小设定下所获得结果的异同。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbf0/6153673/5c63609d66b9/285_2018_1251_Fig1_HTML.jpg

相似文献

1
Fixation probabilities in populations under demographic fluctuations.
J Math Biol. 2018 Oct;77(4):1233-1277. doi: 10.1007/s00285-018-1251-9. Epub 2018 Jun 7.
2
Disentangling eco-evolutionary effects on trait fixation.
Theor Popul Biol. 2018 Dec;124:93-107. doi: 10.1016/j.tpb.2018.10.002. Epub 2018 Oct 22.
3
The limits of weak selection and large population size in evolutionary game theory.
J Math Biol. 2017 Nov;75(5):1285-1317. doi: 10.1007/s00285-017-1119-4. Epub 2017 Mar 28.
4
Moran-type bounds for the fixation probability in a frequency-dependent Wright-Fisher model.
J Math Biol. 2018 Jan;76(1-2):1-35. doi: 10.1007/s00285-017-1137-2. Epub 2017 May 16.
5
Diffusion dynamics on the coexistence subspace in a stochastic evolutionary game.
J Math Biol. 2020 May;80(6):1655-1682. doi: 10.1007/s00285-020-01476-z. Epub 2020 Feb 6.
6
On the stochastic evolution of finite populations.
J Math Biol. 2017 Dec;75(6-7):1735-1774. doi: 10.1007/s00285-017-1135-4. Epub 2017 May 10.
7
Probability of fixation under weak selection: a branching process unifying approach.
Theor Popul Biol. 2006 Jun;69(4):419-41. doi: 10.1016/j.tpb.2006.01.002. Epub 2006 Feb 28.
8
Evolutionary game dynamics of the Wright-Fisher process with different selection intensities.
J Theor Biol. 2019 Mar 21;465:17-26. doi: 10.1016/j.jtbi.2019.01.006. Epub 2019 Jan 8.
9
Extrapolating weak selection in evolutionary games.
J Math Biol. 2019 Jan;78(1-2):135-154. doi: 10.1007/s00285-018-1270-6. Epub 2018 Jul 28.
10
Fixation in large populations: a continuous view of a discrete problem.
J Math Biol. 2016 Jan;72(1-2):283-330. doi: 10.1007/s00285-015-0889-9. Epub 2015 Apr 28.

引用本文的文献

1
Mutant fixation in the presence of a natural enemy.
Nat Commun. 2023 Oct 20;14(1):6642. doi: 10.1038/s41467-023-41787-5.
2
A stochastic analysis of the interplay between antibiotic dose, mode of action, and bacterial competition in the evolution of antibiotic resistance.
PLoS Comput Biol. 2023 Aug 14;19(8):e1011364. doi: 10.1371/journal.pcbi.1011364. eCollection 2023 Aug.
3
Reproductive variance can drive behavioral dynamics.
Proc Natl Acad Sci U S A. 2023 Mar 21;120(12):e2216218120. doi: 10.1073/pnas.2216218120. Epub 2023 Mar 16.
4
Understanding evolutionary and ecological dynamics using a continuum limit.
Ecol Evol. 2021 May 1;11(11):5857-5873. doi: 10.1002/ece3.7205. eCollection 2021 Jun.
5
Evolutionary bet-hedging in structured populations.
J Math Biol. 2021 Apr 1;82(5):43. doi: 10.1007/s00285-021-01597-z.
6
Effects of niche overlap on coexistence, fixation and invasion in a population of two interacting species.
R Soc Open Sci. 2020 Feb 19;7(2):192181. doi: 10.1098/rsos.192181. eCollection 2020 Feb.

本文引用的文献

1
Disentangling eco-evolutionary effects on trait fixation.
Theor Popul Biol. 2018 Dec;124:93-107. doi: 10.1016/j.tpb.2018.10.002. Epub 2018 Oct 22.
2
Public goods games in populations with fluctuating size.
Theor Popul Biol. 2018 May;121:72-84. doi: 10.1016/j.tpb.2018.01.004. Epub 2018 Feb 2.
3
Extinction dynamics from metastable coexistences in an evolutionary game.
Phys Rev E. 2017 Oct;96(4-1):042412. doi: 10.1103/PhysRevE.96.042412. Epub 2017 Oct 30.
4
Mapping of the stochastic Lotka-Volterra model to models of population genetics and game theory.
Phys Rev E. 2017 Aug;96(2-1):022416. doi: 10.1103/PhysRevE.96.022416. Epub 2017 Aug 29.
5
The limits of weak selection and large population size in evolutionary game theory.
J Math Biol. 2017 Nov;75(5):1285-1317. doi: 10.1007/s00285-017-1119-4. Epub 2017 Mar 28.
6
Effects of population growth on the success of invading mutants.
J Theor Biol. 2017 May 7;420:232-240. doi: 10.1016/j.jtbi.2017.03.014. Epub 2017 Mar 18.
7
Towards a mechanistic foundation of evolutionary theory.
Elife. 2017 Feb 15;6:e23804. doi: 10.7554/eLife.23804.
8
Demographic noise can reverse the direction of deterministic selection.
Proc Natl Acad Sci U S A. 2016 Aug 9;113(32):E4745-54. doi: 10.1073/pnas.1603693113. Epub 2016 Jul 22.
9
The mathematics of cancer: integrating quantitative models.
Nat Rev Cancer. 2015 Dec;15(12):730-45. doi: 10.1038/nrc4029.
10
Evolutionary dynamics with fluctuating population sizes and strong mutualism.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Aug;92(2):022718. doi: 10.1103/PhysRevE.92.022718. Epub 2015 Aug 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验