Czuppon Peter, Traulsen Arne
Department of Evolutionary Theory, Max-Planck Institute for Evolutionary Biology, Plön, Germany.
J Math Biol. 2018 Oct;77(4):1233-1277. doi: 10.1007/s00285-018-1251-9. Epub 2018 Jun 7.
We study the fixation probability of a mutant type when introduced into a resident population. We implement a stochastic competitive Lotka-Volterra model with two types and intra- and interspecific competition. The model further allows for stochastically varying population sizes. The competition coefficients are interpreted in terms of inverse payoffs emerging from an evolutionary game. Since our study focuses on the impact of the competition values, we assume the same net growth rate for both types. In this general framework, we derive a formula for the fixation probability [Formula: see text] of the mutant type under weak selection. We find that the most important parameter deciding over the invasion success of the mutant is its death rate due to competition with the resident. Furthermore, we compare our approximation to results obtained by implementing population size changes deterministically in order to explore the parameter regime of validity of our method. Finally, we put our formula in the context of classical evolutionary game theory and observe similarities and differences to the results obtained in that constant population size setting.
我们研究了一种突变类型引入到常驻种群后的固定概率。我们实施了一个具有两种类型以及种内和种间竞争的随机竞争Lotka-Volterra模型。该模型进一步允许种群大小随机变化。竞争系数根据进化博弈中出现的反向收益来解释。由于我们的研究重点是竞争值的影响,我们假设两种类型具有相同的净增长率。在这个一般框架下,我们推导出了弱选择下突变类型固定概率[公式:见原文]的公式。我们发现,决定突变体入侵成功的最重要参数是其与常驻种群竞争导致的死亡率。此外,我们将我们的近似结果与通过确定性地实施种群大小变化所获得的结果进行比较,以探索我们方法的有效性参数范围。最后,我们将我们的公式置于经典进化博弈论的背景下,并观察与在恒定种群大小设定下所获得结果的异同。