Suppr超能文献

一种基于电子健康记录的工具对儿童异常血压识别的影响。

The effect of an electronic health record-based tool on abnormal pediatric blood pressure recognition.

作者信息

Twichell Sarah A, Rea Corinna J, Melvin Patrice, Capraro Andrew J, Mandel Joshua C, Ferguson Michael A, Nigrin Daniel J, Mandl Kenneth D, Graham Dionne, Zachariah Justin P

机构信息

Department of Medicine, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts.

Clinical Research Program, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts.

出版信息

Congenit Heart Dis. 2017 Jul;12(4):484-490. doi: 10.1111/chd.12469. Epub 2017 May 11.

Abstract

BACKGROUND

Recognition of high blood pressure (BP) in children is poor, partly due to the need to compute age-sex-height referenced percentiles. This study examined the change in abnormal BP recognition before versus after the introduction of an electronic health record (EHR) app designed to calculate BP percentiles with a training lecture.

METHODS AND RESULTS

Clinical data were extracted on all ambulatory, non-urgent encounters for children 3-18 years old seen in primary care, endocrinology, cardiology, or nephrology clinics at an urban, academic hospital in the year before and the year after app introduction. Outpatients with at least 1 BP above the age-gender-height referenced 90th percentile were included. Abnormal BP recognition was defined as a BP related ICD-9 code, referral to nephrology or cardiology, an echocardiogram or renal ultrasound to evaluate BP concern, or a follow-up primary care visit for BP monitoring. Multivariable adjusted logistic regression compared odds of recognition before and after app introduction. Of 78 768 clinical encounters, 3521 had abnormal BP in the pre- and 3358 in the post-app period. App use occurred in 13% of elevated BP visits. Overall, abnormal BP was recognized in 4.9% pre-app period visits and 7.1% of visits post-app (P < .0001). Recognition was significantly higher when the app was actually used (adjusted OR 3.17 95% CI 2.29-4.41, P < .001). Without app use recognition was not different.

CONCLUSIONS

BP app advent modestly increased abnormal BP recognition in the entire cohort, but actual app use was associated with significantly higher recognition. Predictors of abnormal BP recognition deserve further scrutiny.

摘要

背景

儿童高血压的识别情况较差,部分原因是需要计算年龄、性别、身高参考百分位数。本研究调查了一款旨在通过培训讲座计算血压百分位数的电子健康记录(EHR)应用程序引入前后异常血压识别情况的变化。

方法与结果

提取了一家城市学术医院在应用程序引入前一年和引入后一年在初级保健、内分泌科、心脏病科或肾病科诊所就诊的所有3至18岁儿童门诊非紧急就诊的临床数据。纳入至少有一次血压高于年龄、性别、身高参考第90百分位数的门诊患者。异常血压识别定义为与血压相关的ICD-9编码、转诊至肾病科或心脏病科、进行超声心动图或肾脏超声检查以评估血压问题,或进行后续初级保健随访以监测血压。多变量调整逻辑回归比较了应用程序引入前后识别异常血压的几率。在78768次临床就诊中,应用程序引入前有3521次血压异常,应用程序引入后有3358次。13%的血压升高就诊使用了该应用程序。总体而言,应用程序引入前的就诊中有4.9%识别出异常血压,应用程序引入后的就诊中有7.1%识别出异常血压(P <.0001)。实际使用该应用程序时,识别率显著更高(调整后的OR为3.17,95%CI为2.29-4.41,P <.001)。未使用应用程序时,识别率无差异。

结论

血压应用程序的出现适度提高了整个队列中异常血压的识别率,但实际使用该应用程序与显著更高的识别率相关。异常血压识别的预测因素值得进一步研究。

相似文献

1
The effect of an electronic health record-based tool on abnormal pediatric blood pressure recognition.
Congenit Heart Dis. 2017 Jul;12(4):484-490. doi: 10.1111/chd.12469. Epub 2017 May 11.
2
Influence of Blood Pressure Percentile Reporting on the Recognition of Elevated Blood Pressures.
Hosp Pediatr. 2021 Aug;11(8):799-807. doi: 10.1542/hpeds.2020-002055. Epub 2021 Jul 2.
3
Recognition of elevated blood pressure in an outpatient pediatric tertiary care setting.
J Pediatr. 2015 May;166(5):1233-1239.e1. doi: 10.1016/j.jpeds.2015.02.006.
4
Underdiagnosis of hypertension in children and adolescents.
JAMA. 2007 Aug 22;298(8):874-9. doi: 10.1001/jama.298.8.874.
5
Evaluation of an Electronic Clinical Decision Support Tool for Incident Elevated BP in Adolescents.
Acad Pediatr. 2018 Jan-Feb;18(1):43-50. doi: 10.1016/j.acap.2017.07.004. Epub 2017 Jul 16.
7
Adherence to the 2017 Clinical Practice Guidelines for Pediatric Hypertension in Safety-Net Clinics.
JAMA Netw Open. 2023 Apr 3;6(4):e237043. doi: 10.1001/jamanetworkopen.2023.7043.
8
Real-time electronic medical record alerts increase high blood pressure recognition in children.
Clin Pediatr (Phila). 2015 Jun;54(7):667-75. doi: 10.1177/0009922814559379. Epub 2014 Nov 20.
9
Blood pressure control in pediatric hemodialysis: the Midwest Pediatric Nephrology Consortium Study.
Pediatr Nephrol. 2007 Apr;22(4):547-53. doi: 10.1007/s00467-006-0341-x. Epub 2006 Nov 7.
10
Blood pressure percentile charts to identify high or low blood pressure in children.
BMC Pediatr. 2016 Jul 19;16:98. doi: 10.1186/s12887-016-0633-7.

引用本文的文献

1
Accuracy of Electronic Health Record Phenotypes to Detect Recognition of Hypertension in Pediatric Primary Care.
Acad Pediatr. 2025 Apr;25(3):102629. doi: 10.1016/j.acap.2024.102629. Epub 2024 Dec 26.
2
Pediatric High Blood Pressure Recognition Associated With Electronic Decision Support: A Cohort Analysis.
Hypertension. 2024 Dec;81(12):2501-2509. doi: 10.1161/HYPERTENSIONAHA.124.23532. Epub 2024 Oct 16.
3
Screening and Management of Pediatric High Blood Pressure-Challenges to Implementing the Clinical Practice Guideline.
Curr Hypertens Rep. 2024 Jun;26(6):259-271. doi: 10.1007/s11906-024-01298-0. Epub 2024 Mar 9.
4
Integration of AI in healthcare requires an interoperable digital data ecosystem.
Nat Med. 2024 Mar;30(3):631-634. doi: 10.1038/s41591-023-02783-w.
5
Establishing a multidisciplinary initiative for interoperable electronic health record innovations at an academic medical center.
JAMIA Open. 2021 Jul 31;4(3):ooab041. doi: 10.1093/jamiaopen/ooab041. eCollection 2021 Jul.
6
Clinical Decision Support for the Diagnosis and Management of Adult and Pediatric Hypertension.
Curr Hypertens Rep. 2020 Aug 27;22(9):67. doi: 10.1007/s11906-020-01083-9.
7
Identification of hypertension in hospitalized children prescribed as-needed antihypertensive medication.
J Clin Hypertens (Greenwich). 2020 Aug;22(8):1452-1457. doi: 10.1111/jch.13950. Epub 2020 Aug 4.
9
Evaluation and management of elevated blood pressures in hospitalized children.
Pediatr Nephrol. 2019 Oct;34(10):1671-1681. doi: 10.1007/s00467-018-4070-8. Epub 2018 Aug 31.

本文引用的文献

1
Driving Innovation in Health Systems through an Apps-Based Information Economy.
Cell Syst. 2015 Jul;1(1):8-13. doi: 10.1016/j.cels.2015.05.001.
2
Prevalence of and trends in dyslipidemia and blood pressure among US children and adolescents, 1999-2012.
JAMA Pediatr. 2015 Mar;169(3):272-9. doi: 10.1001/jamapediatrics.2014.3216.
3
Real-time electronic medical record alerts increase high blood pressure recognition in children.
Clin Pediatr (Phila). 2015 Jun;54(7):667-75. doi: 10.1177/0009922814559379. Epub 2014 Nov 20.
5
Predictors in adolescence of ESRD in middle-aged men.
Am J Kidney Dis. 2014 Nov;64(5):723-9. doi: 10.1053/j.ajkd.2014.06.019. Epub 2014 Aug 12.
6
Undiagnosed hypertension among young adults with regular primary care use.
J Hypertens. 2014 Jan;32(1):65-74. doi: 10.1097/HJH.0000000000000008.
9
Hypertension screening during ambulatory pediatric visits in the United States, 2000-2009.
Pediatrics. 2012 Oct;130(4):604-10. doi: 10.1542/peds.2011-3888. Epub 2012 Sep 17.
10
The SMART Platform: early experience enabling substitutable applications for electronic health records.
J Am Med Inform Assoc. 2012 Jul-Aug;19(4):597-603. doi: 10.1136/amiajnl-2011-000622. Epub 2012 Mar 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验