Nugent James T, Cueto Victoria, Tong Christina, Sharifi Mona
Department of Pediatrics (JT Nugent, V Cueto, and M Sharifi), Yale School of Medicine, New Haven, Conn.
Department of Pediatrics (JT Nugent, V Cueto, and M Sharifi), Yale School of Medicine, New Haven, Conn.
Acad Pediatr. 2025 Apr;25(3):102629. doi: 10.1016/j.acap.2024.102629. Epub 2024 Dec 26.
To evaluate the accuracy of extractable electronic health record (EHR) data to define clinician recognition of hypertension in pediatric primary care.
We used EHR data to perform a cross-sectional study of children aged 3 to 18 years at well-visits in Connecticut from 2018 to 2023 (n = 50,290) that had either 1) incident hypertension (hypertensive blood pressure [BP] at the well-visit and ≥2 prior hypertensive BPs without prior diagnosis of hypertension) or 2) isolated hypertensive BP at the well-visit without necessarily having prior hypertensive BPs. We tested the accuracy of EHR phenotypes to detect recognition of incident hypertension or hypertensive BP using structured elements, including diagnosis codes, problem list entries, number of BP measurements, orders, and follow-up information. The primary outcome of hypertension recognition was determined by chart review.
Among 239 children with incident hypertension and a random sample of 220 children with hypertensive BP, 13% in each sample had clinician recognition of hypertension and hypertensive BP, respectively. An algorithm using International Classification of Diseases, Tenth Revision (ICD-10) encounter diagnosis code, ICD-10 problem list, or multiple BPs during the visit had the highest area under the curve (AUC) for attention to incident hypertension (AUC, 0.84; sensitivity, 71.9%; specificity, 95.7%). Adding follow-up BP information to this algorithm had the highest AUC for attention to hypertensive BP (AUC, 0.85; sensitivity, 75.9%; specificity, 93.2%). For patients with hypertension recognition by chart review, ∼20% had only free text documentation of hypertension without any structured elements.
EHR phenotypes for hypertension recognition have high specificity and moderate sensitivity and may be used in clinician decision support to improve guideline-recommended care.
评估可提取的电子健康记录(EHR)数据用于定义儿科初级保健中临床医生对高血压识别的准确性。
我们利用EHR数据对2018年至2023年在康涅狄格州进行健康检查的3至18岁儿童开展横断面研究(n = 50,290),这些儿童符合以下两种情况之一:1)新发高血压(健康检查时血压升高[BP]且既往有≥2次高血压BP但未先前诊断为高血压)或2)健康检查时孤立性高血压BP,不一定有既往高血压BP。我们使用结构化元素(包括诊断代码、问题列表条目、BP测量次数、医嘱和随访信息)测试EHR表型检测新发高血压或高血压BP识别的准确性。高血压识别的主要结果通过病历审查确定。
在239例新发高血压儿童和220例高血压BP儿童的随机样本中,每个样本分别有13%的儿童被临床医生识别为高血压和高血压BP。使用国际疾病分类第十版(ICD - 10)就诊诊断代码、ICD - 10问题列表或就诊期间多次BP测量的算法对新发高血压的关注具有最高的曲线下面积(AUC)(AUC,0.84;敏感性,71.9%;特异性,95.7%)。在此算法中添加随访BP信息对高血压BP的关注具有最高的AUC(AUC,0.85;敏感性,75.9%;特异性,93.2%)。对于通过病历审查识别为高血压的患者,约20%仅有高血压的自由文本记录,没有任何结构化元素。
用于高血压识别的EHR表型具有高特异性和中等敏感性,可用于临床医生决策支持,以改善指南推荐的护理。