Institut für Physik, Humboldt-Universität zu Berlin , Newtonstr. 15, D-12489 Berlin, Germany.
Institut für Weiche Materie and Funktionale Materialen, Helmholtz-Zentrum Berlin , Hahn-Meitner Platz 1, D-14109 Berlin, Germany.
J Chem Theory Comput. 2017 Jun 13;13(6):3012-3019. doi: 10.1021/acs.jctc.7b00216. Epub 2017 May 31.
We investigate how to tune the rate of hydrophobic ligand-receptor association due to the role of solvent in adjustable receptor pockets by explicit-water molecular dynamics (MD) simulations. Our model considers the binding of a spherical ligand (key/guest) to a concave surface recess in a nonpolar wall as receptor (lock/host). We systematically modify the receptor's physicochemical properties in terms of geometry and dispersion attraction which, in turn, alter the water occupancy and fluctuations within the pocket. We demonstrate that even minor pocket modifications can lead to a significant acceleration of the water-mediated association. For example, the binding switches from comparably slow to fast if the binding pocket becomes only slightly deeper. We find that the degree of hydrophobicity, characterized by hydration occupancy and its fluctuations, clearly correlates with the binding times and, for instance, links the sudden acceleration to an abrupt increase in hydrophobicity. For a deeper analysis based on passage time theory, we quantify the intimate coupling between solvent fluctuations and the ligand's local dynamics and friction. The coupling exhibits substantial nonequilibrium effects and maximizes shortly before binding, which slows down the binding kinetics in all cases. In summary, we rationalize how the physicochemical properties of a nonpolar, concave binding site tune key-lock binding kinetics due to water-mediated forces and fluctuations. Our study thus complements the profound understanding of the solvent's influence in host-guest binding, which is essential for tailored solutions in catalysis and pharmaceutical applications.
我们通过显式水分子动力学(MD)模拟研究了如何调整疏水性配体-受体缔合的速率,这归因于溶剂在可调受体口袋中的作用。我们的模型考虑了球形配体(钥匙/客体)与非极性壁上的凹面凹陷(锁/主体)之间的结合。我们系统地改变受体的物理化学性质,包括几何形状和色散吸引力,这反过来又改变了口袋内的水占有率和波动。我们证明,即使是微小的口袋修饰也可以显著加速水介导的缔合。例如,如果结合口袋仅稍微变深,结合就会从相对较慢变为快速。我们发现,疏水性的程度,由水合占有率及其波动来表征,与结合时间明显相关,例如,将突然加速与疏水性的突然增加联系起来。为了基于通过时间理论进行更深入的分析,我们量化了溶剂波动和配体局部动力学之间的密切耦合以及摩擦。耦合表现出显著的非平衡效应,并在结合前短时间内最大化,这在所有情况下都减缓了结合动力学。总之,我们解释了非极性、凹面结合位点的物理化学性质如何通过水介导的力和波动来调整关键锁结合动力学。因此,我们的研究补充了对溶剂在主客体结合中影响的深刻理解,这对于催化和药物应用中的定制解决方案至关重要。