Suppr超能文献

厌氧生长对大肠杆菌喹诺酮致死率的影响。

Effect of anaerobic growth on quinolone lethality with Escherichia coli.

作者信息

Malik Muhammad, Hussain Syed, Drlica Karl

机构信息

Public Health Research Institute, 225 Warren Street, Newark, NJ 07103, USA.

出版信息

Antimicrob Agents Chemother. 2007 Jan;51(1):28-34. doi: 10.1128/AAC.00739-06. Epub 2006 Oct 16.

Abstract

Quinolone activity against Escherichia coli was examined during aerobic growth, aerobic treatment with chloramphenicol, and anaerobic growth. Nalidixic acid, norfloxacin, ciprofloxacin, and PD161144 were lethal for cultures growing aerobically, and the bacteriostatic activity of each quinolone was unaffected by anaerobic growth. However, lethal activity was distinct for each quinolone with cells treated aerobically with chloramphenicol or grown anaerobically. Nalidixic acid failed to kill cells under both conditions; norfloxacin killed cells when they were grown anaerobically but not when they were treated with chloramphenicol; ciprofloxacin killed cells under both conditions but required higher concentrations than those required with cells grown aerobically; and PD161144, a C-8-methoxy fluoroquinolone, was equally lethal under all conditions. Following pretreatment with nalidixic acid, a shift to anaerobic conditions or the addition of chloramphenicol rapidly blocked further cell death. Formation of quinolone-gyrase-DNA complexes, observed as a sodium dodecyl sulfate (SDS)-dependent drop in cell lysate viscosity, occurred during aerobic and anaerobic growth and in the presence and in the absence of chloramphenicol. However, lethal chromosome fragmentation, detected as a drop in viscosity in the absence of SDS, occurred with nalidixic acid treatment only under aerobic conditions in the absence of chloramphenicol. With PD161144, chromosome fragmentation was detected when the cells were grown aerobically and anaerobically and in the presence and in the absence of chloramphenicol. Thus, all quinolones tested appear to form reversible bacteriostatic complexes containing broken DNA during aerobic growth, during anaerobic growth, and when protein synthesis is blocked; however, the ability to fragment chromosomes and to rapidly kill cells under these conditions depends on quinolone structure.

摘要

在需氧生长、氯霉素需氧处理及厌氧生长过程中,对喹诺酮类药物针对大肠杆菌的活性进行了检测。萘啶酸、诺氟沙星、环丙沙星和PD161144对需氧生长的培养物具有致死性,且每种喹诺酮类药物的抑菌活性不受厌氧生长的影响。然而,对于在需氧条件下用氯霉素处理或厌氧生长的细胞,每种喹诺酮类药物的致死活性有所不同。萘啶酸在这两种条件下均无法杀死细胞;诺氟沙星在细胞厌氧生长时可杀死细胞,但在细胞用氯霉素处理时则不能;环丙沙星在这两种条件下均可杀死细胞,但所需浓度高于需氧生长的细胞;而C-8-甲氧基氟喹诺酮类药物PD161144在所有条件下均具有同等致死性。用萘啶酸预处理后,转为厌氧条件或添加氯霉素会迅速阻止进一步的细胞死亡。在需氧和厌氧生长过程中以及存在和不存在氯霉素的情况下,均会形成喹诺酮-gyrase-DNA复合物,这表现为细胞裂解液粘度的十二烷基硫酸钠(SDS)依赖性下降。然而,仅在需氧条件下且不存在氯霉素时,用萘啶酸处理才会导致致死性染色体断裂(表现为无SDS时粘度下降)。对于PD161144,在细胞需氧和厌氧生长时以及存在和不存在氯霉素的情况下均检测到染色体断裂。因此,所有测试的喹诺酮类药物在需氧生长、厌氧生长以及蛋白质合成受阻时似乎都会形成含有断裂DNA的可逆抑菌复合物;然而,在这些条件下使染色体断裂并迅速杀死细胞的能力取决于喹诺酮类药物的结构。

相似文献

1
Effect of anaerobic growth on quinolone lethality with Escherichia coli.
Antimicrob Agents Chemother. 2007 Jan;51(1):28-34. doi: 10.1128/AAC.00739-06. Epub 2006 Oct 16.
2
Lethal fragmentation of bacterial chromosomes mediated by DNA gyrase and quinolones.
Mol Microbiol. 2006 Aug;61(3):810-25. doi: 10.1111/j.1365-2958.2006.05275.x. Epub 2006 Jun 27.
3
DNA gyrase and topoisomerase IV on the bacterial chromosome: quinolone-induced DNA cleavage.
J Mol Biol. 1996 May 17;258(4):627-37. doi: 10.1006/jmbi.1996.0274.
4
Lethal action of quinolones against a temperature-sensitive dnaB replication mutant of Escherichia coli.
Antimicrob Agents Chemother. 2006 Jan;50(1):362-4. doi: 10.1128/AAC.50.1.362-364.2006.
8
Bactericidal activity of sparfloxacin and ciprofloxacin under anaerobic conditions.
J Antimicrob Chemother. 1991 Sep;28(3):399-405. doi: 10.1093/jac/28.3.399.
9
Lethality of quinolones against Mycobacterium smegmatis in the presence or absence of chloramphenicol.
Antimicrob Agents Chemother. 2005 May;49(5):2008-14. doi: 10.1128/AAC.49.5.2008-2014.2005.
10
Contribution of reactive oxygen species to pathways of quinolone-mediated bacterial cell death.
J Antimicrob Chemother. 2010 Mar;65(3):520-4. doi: 10.1093/jac/dkp486. Epub 2010 Jan 12.

引用本文的文献

1
Antibiotic-Induced Bacterial Cell Death: A "Radical" Way of Dying?
Curr Top Microbiol Immunol. 2025 Aug 9. doi: 10.1007/82_2024_284.
3
Antibiotic-persistent bacterial cells exhibiting low-level ROS are eradicated by ROS-independent membrane disruption.
mBio. 2025 Aug 13;16(8):e0119925. doi: 10.1128/mbio.01199-25. Epub 2025 Jun 30.
4
Limited impact of Salmonella stress and persisters on antibiotic clearance.
Nature. 2025 Mar;639(8053):181-189. doi: 10.1038/s41586-024-08506-6. Epub 2025 Feb 5.
5
Quinolone Antibiotics: Resistance and Therapy.
Infect Drug Resist. 2023 Feb 10;16:811-820. doi: 10.2147/IDR.S401663. eCollection 2023.
7
Fluoroquinolone heteroresistance, antimicrobial tolerance, and lethality enhancement.
Front Cell Infect Microbiol. 2022 Sep 29;12:938032. doi: 10.3389/fcimb.2022.938032. eCollection 2022.
10
Biological Effects of Quinolones: A Family of Broad-Spectrum Antimicrobial Agents.
Molecules. 2021 Nov 25;26(23):7153. doi: 10.3390/molecules26237153.

本文引用的文献

1
Moxifloxacin lethality against Mycobacterium tuberculosis in the presence and absence of chloramphenicol.
Antimicrob Agents Chemother. 2006 Aug;50(8):2842-4. doi: 10.1128/AAC.00250-06.
2
Lethal fragmentation of bacterial chromosomes mediated by DNA gyrase and quinolones.
Mol Microbiol. 2006 Aug;61(3):810-25. doi: 10.1111/j.1365-2958.2006.05275.x. Epub 2006 Jun 27.
3
Lethal action of quinolones against a temperature-sensitive dnaB replication mutant of Escherichia coli.
Antimicrob Agents Chemother. 2006 Jan;50(1):362-4. doi: 10.1128/AAC.50.1.362-364.2006.
4
Changes in energy metabolism of Mycobacterium tuberculosis in mouse lung and under in vitro conditions affecting aerobic respiration.
Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15629-34. doi: 10.1073/pnas.0507850102. Epub 2005 Oct 14.
6
Lethality of quinolones against Mycobacterium smegmatis in the presence or absence of chloramphenicol.
Antimicrob Agents Chemother. 2005 May;49(5):2008-14. doi: 10.1128/AAC.49.5.2008-2014.2005.
7
Escherichia coli mazEF-mediated cell death is triggered by various stressful conditions.
J Bacteriol. 2004 Jun;186(11):3663-9. doi: 10.1128/JB.186.11.3663-3669.2004.
8
MECHANISM OF ACTION OF NALIDIXIC ACID ON ESCHERICHIA COLI.II. INHIBITION OF DEOXYRIBONUCLEIC ACID SYNTHESIS.
J Bacteriol. 1965 Apr;89(4):1068-74. doi: 10.1128/jb.89.4.1068-1074.1965.
9
MECHANISM OF ACTION OF NALIDIXIC ACID ON ESCHERICHIA COLI.
J Bacteriol. 1964 Oct;88(4):1112-8. doi: 10.1128/jb.88.4.1112-1118.1964.
10
Fluoroquinolones: action and resistance.
Curr Top Med Chem. 2003;3(3):249-82. doi: 10.2174/1568026033452537.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验