Suppr超能文献

使用超临界角荧光的近膜折射测定法。

Near-Membrane Refractometry Using Supercritical Angle Fluorescence.

作者信息

Brunstein Maia, Roy Lopamudra, Oheim Martin

机构信息

Brain Physiology Laboratory, CNRS UMR 8118, Paris, France; Fédération de Recherche en Neurosciences FR 3636, Faculté de Sciences Fondamentales et Biomédicales, Université Paris Descartes, PRES Sorbonne Paris Cité, Paris, France.

Brain Physiology Laboratory, CNRS UMR 8118, Paris, France; Fédération de Recherche en Neurosciences FR 3636, Faculté de Sciences Fondamentales et Biomédicales, Université Paris Descartes, PRES Sorbonne Paris Cité, Paris, France; Erasmus Mundus International Master Europhotonics-POESII, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany; Karlsruhe School of Optics and Photonics (KSOP), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany; Aix Marseille University, CNRS UMR 7249, Centrale Marseille, Institut Fresnel, Marseille, France.

出版信息

Biophys J. 2017 May 9;112(9):1940-1948. doi: 10.1016/j.bpj.2017.03.008.

Abstract

Total internal reflection fluorescence (TIRF) microscopy and its variants are key technologies for visualizing the dynamics of single molecules or organelles in live cells. Yet truly quantitative TIRF remains problematic. One unknown hampering the interpretation of evanescent-wave excited fluorescence intensities is the undetermined cell refractive index (RI). Here, we use a combination of TIRF excitation and supercritical angle fluorescence emission detection to directly measure the average RI in the "footprint" region of the cell during image acquisition. Our RI measurement is based on the determination on a back-focal plane image of the critical angle separating evanescent and far-field fluorescence emission components. We validate our method by imaging mouse embryonic fibroblasts and BON cells. By targeting various dyes and fluorescent-protein chimeras to vesicles, the plasma membrane, as well as mitochondria and the endoplasmic reticulum, we demonstrate local RI measurements with subcellular resolution on a standard TIRF microscope, with a removable Bertrand lens as the only modification. Our technique has important applications for imaging axial vesicle dynamics and the mitochondrial energy state or detecting metabolically more active cancer cells.

摘要

全内反射荧光(TIRF)显微镜及其变体是用于可视化活细胞中单个分子或细胞器动态的关键技术。然而,真正的定量TIRF仍然存在问题。妨碍对倏逝波激发荧光强度进行解释的一个未知因素是未确定的细胞折射率(RI)。在这里,我们结合使用TIRF激发和超临界角荧光发射检测,在图像采集过程中直接测量细胞“足迹”区域的平均RI。我们的RI测量基于对分离倏逝荧光和远场荧光发射成分的临界角的背焦平面图像的测定。我们通过对小鼠胚胎成纤维细胞和BON细胞进行成像来验证我们的方法。通过将各种染料和荧光蛋白嵌合体靶向囊泡、质膜以及线粒体和内质网,我们展示了在标准TIRF显微镜上以亚细胞分辨率进行的局部RI测量,唯一的修改是使用可移除的贝特朗透镜。我们的技术在成像轴向囊泡动态和线粒体能量状态或检测代谢更活跃的癌细胞方面具有重要应用。

相似文献

1
Near-Membrane Refractometry Using Supercritical Angle Fluorescence.
Biophys J. 2017 May 9;112(9):1940-1948. doi: 10.1016/j.bpj.2017.03.008.
3
Supercritical Angle Fluorescence Microscopy and Spectroscopy.
Biophys J. 2020 May 19;118(10):2339-2348. doi: 10.1016/j.bpj.2020.03.029. Epub 2020 Apr 11.
4
Calibrating Evanescent-Wave Penetration Depths for Biological TIRF Microscopy.
Biophys J. 2019 Sep 3;117(5):795-809. doi: 10.1016/j.bpj.2019.07.048. Epub 2019 Aug 5.
6
High resolution surface plasmon resonance imaging for single cells.
BMC Cell Biol. 2014 Dec 1;15:35. doi: 10.1186/1471-2121-15-35.
7
Ultrasensitive Refractometry via Supercritical Angle Fluorescence.
ACS Nano. 2018 Dec 26;12(12):11892-11898. doi: 10.1021/acsnano.8b05849. Epub 2018 Nov 29.
8
Total internal reflection fluorescence (TIRF) microscopy.
Curr Protoc Cytom. 2009 Oct;Chapter 12:Unit12.18. doi: 10.1002/0471142956.cy1218s50.
9
Fluorescence excitation and imaging of single molecules near dielectric-coated and bare surfaces: a theoretical study.
J Microsc. 2012 Aug;247(2):147-60. doi: 10.1111/j.1365-2818.2012.03625.x. Epub 2012 May 21.
10
TIRF microscopy with ultra-short penetration depth.
Opt Express. 2014 May 5;22(9):10728-34. doi: 10.1364/OE.22.010728.

引用本文的文献

1
Advanced quantification for single-cell adhesion by variable-angle TIRF nanoscopy.
Biophys Rep (N Y). 2021 Sep 10;1(2):100021. doi: 10.1016/j.bpr.2021.100021. eCollection 2021 Dec 8.
2
Optometry for a short-sighted microscope.
Biophys J. 2021 Oct 19;120(20):4301-4304. doi: 10.1016/j.bpj.2021.09.011. Epub 2021 Sep 10.
3
Supercritical Angle Fluorescence Microscopy and Spectroscopy.
Biophys J. 2020 May 19;118(10):2339-2348. doi: 10.1016/j.bpj.2020.03.029. Epub 2020 Apr 11.
4
Calibrating Evanescent-Wave Penetration Depths for Biological TIRF Microscopy.
Biophys J. 2019 Sep 3;117(5):795-809. doi: 10.1016/j.bpj.2019.07.048. Epub 2019 Aug 5.

本文引用的文献

1
Topography of Cells Revealed by Variable-Angle Total Internal Reflection Fluorescence Microscopy.
Biophys J. 2016 Sep 20;111(6):1316-1327. doi: 10.1016/j.bpj.2016.06.043.
2
Cell refractive index for cell biology and disease diagnosis: past, present and future.
Lab Chip. 2016 Feb 21;16(4):634-44. doi: 10.1039/c5lc01445j. Epub 2016 Jan 6.
4
Significant correlation between refractive index and activity of mitochondria: single mitochondrion study.
Biomed Opt Express. 2015 Feb 19;6(3):859-69. doi: 10.1364/BOE.6.000859. eCollection 2015 Mar 1.
5
Common-path configuration in total internal reflection digital holography microscopy.
Opt Lett. 2014 Apr 15;39(8):2471-4. doi: 10.1364/OL.39.002471.
8
Polarization-controlled TIRFM with focal drift and spatial field intensity correction.
Biophys J. 2014 Mar 4;106(5):1008-19. doi: 10.1016/j.bpj.2013.12.043.
9
Axial nanoscale localization by normalized total internal reflection fluorescence microscopy.
Opt Lett. 2014 Feb 15;39(4):869-72. doi: 10.1364/OL.39.000869.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验