Peterson Alexander W, Halter Michael, Tona Alessandro, Plant Anne L
Biosystems and Biomaterials Division, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 8313, Gaithersburg, MD 20899, USA.
BMC Cell Biol. 2014 Dec 1;15:35. doi: 10.1186/1471-2121-15-35.
Surface plasmon resonance imaging (SPRI) is a label-free technique that can image refractive index changes at an interface. We have previously used SPRI to study the dynamics of cell-substratum interactions. However, characterization of spatial resolution in 3 dimensions is necessary to quantitatively interpret SPR images. Spatial resolution is complicated by the asymmetric propagation length of surface plasmons in the x and y dimensions leading to image degradation in one direction. Inferring the distance of intracellular organelles and other subcellular features from the interface by SPRI is complicated by uncertainties regarding the detection of the evanescent wave decay into cells. This study provides an experimental basis for characterizing the resolution of an SPR imaging system in the lateral and distal dimensions and demonstrates a novel approach for resolving sub-micrometer cellular structures by SPRI. The SPRI resolution here is distinct in its ability to visualize subcellular structures that are in proximity to a surface, which is comparable with that of total internal reflection fluorescence (TIRF) microscopy but has the advantage of no fluorescent labels.
An SPR imaging system was designed that uses a high numerical aperture objective lens to image cells and a digital light projector to pattern the angle of the incident excitation on the sample. Cellular components such as focal adhesions, nucleus, and cellular secretions are visualized. The point spread function of polymeric nanoparticle beads indicates near-diffraction limited spatial resolution. To characterize the z-axis response, we used micrometer scale polymeric beads with a refractive index similar to cells as reference materials to determine the detection limit of the SPR field as a function of distance from the substrate. Multi-wavelength measurements of these microspheres show that it is possible to tailor the effective depth of penetration of the evanescent wave into the cellular environment.
We describe how the use of patterned incident light provides SPRI at high spatial resolution, and we characterize a finite limit of detection for penetration depth. We demonstrate the application of a novel technique that allows unprecedented subcellular detail for SPRI, and enables a quantitative interpretation of SPRI for subcellular imaging.
表面等离子体共振成像(SPRI)是一种无标记技术,可对界面处的折射率变化进行成像。我们之前曾使用SPRI研究细胞与基质相互作用的动力学。然而,为了定量解释SPR图像,有必要对三维空间分辨率进行表征。表面等离子体在x和y维度上的传播长度不对称,导致图像在一个方向上退化,这使得空间分辨率变得复杂。通过SPRI推断细胞内细胞器和其他亚细胞特征与界面的距离,因倏逝波衰减进入细胞的检测存在不确定性而变得复杂。本研究为表征SPR成像系统在横向和纵向维度的分辨率提供了实验依据,并展示了一种通过SPRI解析亚微米级细胞结构的新方法。此处的SPRI分辨率在可视化靠近表面的亚细胞结构方面具有独特能力,与全内反射荧光(TIRF)显微镜相当,但具有无需荧光标记的优势。
设计了一种SPR成像系统,该系统使用高数值孔径物镜对细胞进行成像,并使用数字光投影仪对样品上入射激发光的角度进行图案化。可视化了诸如粘着斑、细胞核和细胞分泌物等细胞成分。聚合物纳米颗粒珠的点扩散函数表明空间分辨率接近衍射极限。为了表征z轴响应,我们使用折射率与细胞相似的微米级聚合物珠作为参考材料,以确定SPR场的检测极限与距基质距离的函数关系。对这些微球的多波长测量表明,可以调整倏逝波进入细胞环境的有效穿透深度。
我们描述了如何通过使用图案化入射光实现高空间分辨率的SPRI,并表征了穿透深度的有限检测极限。我们展示了一种新技术的应用,该技术为SPRI提供了前所未有的亚细胞细节,并能够对亚细胞成像的SPRI进行定量解释。