Milián Ernest, Julien Thomas, Biaggio Rafael, Venereo-Sanchez Alina, Montes Johnny, Manceur Aziza P, Ansorge Sven, Petiot Emma, Rosa-Calatrava Manuel, Kamen Amine
Department of Bioengineering, McGill University, Montréal, Québec, Canada; Vaccine Program, Human Health Therapeutics, National Research Council, Montréal, Québec, Canada.
Virologie et Pathologie Humaine - VirPath Team, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France.
Vaccine. 2017 Jun 8;35(26):3423-3430. doi: 10.1016/j.vaccine.2017.04.065. Epub 2017 May 8.
Despite major advances in developing capacities and alternative technologies to egg-based production of influenza vaccines, responsiveness to an influenza pandemic threat is limited by the time it takes to generate a Candidate Vaccine Virus (CVV) as reported by the 2015 WHO Informal Consultation report titled "Influenza Vaccine Response during the Start of a Pandemic". In previous work, we have shown that HEK-293 cell culture in suspension and serum free medium is an efficient production platform for cell culture manufacturing of influenza candidate vaccines. This report, took advantage of, recombinant DNA technology using Reverse Genetics of influenza strains, and advances in the large-scale transfection of suspension cultured HEK-293 cells. We demonstrate the efficient generation of H1N1 with the PR8 backbone reassortant under controlled bioreactor conditions in two sequential steps (transfection/rescue and infection/production). This approach could deliver a CVV for influenza vaccine manufacturing within two-weeks, starting from HA and NA pandemic sequences. Furthermore, the scalability of the transfection technology combined with the HEK-293 platform has been extensively demonstrated at >100L scale for several biologics, including recombinant viruses. Thus, this innovative approach is better suited to rationally engineer and mass produce influenza CVV within significantly shorter timelines to enable an effective global response in pandemic situations.
尽管在开发流感疫苗生产能力和替代基于鸡蛋生产的技术方面取得了重大进展,但正如2015年世界卫生组织题为《大流行开始时的流感疫苗应对》的非正式磋商报告所指出的,对流感大流行威胁的应对能力受到生成候选疫苗病毒(CVV)所需时间的限制。在之前的工作中,我们已经表明,悬浮于无血清培养基中的HEK-293细胞培养是流感候选疫苗细胞培养生产的高效平台。本报告利用了流感病毒株反向遗传学的重组DNA技术以及悬浮培养的HEK-293细胞大规模转染技术的进展。我们展示了在受控生物反应器条件下,通过两个连续步骤(转染/拯救和感染/生产),利用PR8骨架重配体高效生成H1N1。从HA和NA大流行序列开始,这种方法可以在两周内为流感疫苗生产提供CVV。此外,转染技术与HEK-293平台相结合的可扩展性已在超过100L规模上针对包括重组病毒在内的多种生物制品得到广泛验证。因此,这种创新方法更适合在显著更短的时间内合理设计和大规模生产流感CVV,以便在大流行情况下做出有效的全球应对。