Davulcu Omar, Peng Yu, Brüschweiler Rafael, Skalicky Jack J, Chapman Michael S
Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR 97239, United States.
Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, United States.
J Struct Biol. 2017 Dec;200(3):258-266. doi: 10.1016/j.jsb.2017.05.002. Epub 2017 May 8.
Arginine kinase catalyzes reversible phosphoryl transfer between arginine and ATP. Crystal structures of arginine kinase in an open, substrate-free form and closed, transition state analog (TSA) complex indicate that the enzyme undergoes substantial domain and loop rearrangements required for substrate binding, catalysis, and product release. Nuclear magnetic resonance (NMR) has shown that substrate-free arginine kinase is rigid on the ps-ns timescale (average S=0.84±0.08) yet quite dynamic on the µs-ms timescale (35 residues with R, 12%), and that movements of the N-terminal domain and the loop comprising residues I182-G209 are rate-limiting on catalysis. Here, NMR of the TSA-bound enzyme shows similar rigidity on the ps-ns timescale (average S=0.91±0.05) and substantially increased μs-ms timescale dynamics (77 residues; 22%). Many of the residues displaying μs-ms dynamics in NMR Carr-Purcell-Meiboom-Gill (CPMG) N backbone relaxation dispersion experiments of the TSA complex are also dynamic in substrate-free enzyme. However, the presence of additional dynamic residues in the TSA-bound form suggests that dynamics extend through much of the C-terminal domain, which indicates that in the closed form, a larger fraction of the protein takes part in conformational transitions to the excited state(s). Conformational exchange rate constants (k) of the TSA complex are all approximately 2500s, higher than any observed in the substrate-free enzyme (800-1900s). Elevated μs-ms timescale protein dynamics in the TSA-bound enzyme is more consistent with recently postulated catalytic networks involving multiple interconnected states at each step of the reaction, rather than a classical single stabilized transition state.
精氨酸激酶催化精氨酸与ATP之间的可逆磷酸基转移。开放的、无底物形式以及封闭的、过渡态类似物(TSA)复合物形式的精氨酸激酶晶体结构表明,该酶在底物结合、催化和产物释放过程中会经历大量结构域和环的重排。核磁共振(NMR)显示,无底物的精氨酸激酶在皮秒至纳秒时间尺度上是刚性的(平均S = 0.84±0.08),但在微秒至毫秒时间尺度上相当动态(35个残基具有R,12%),并且N端结构域和包含I182 - G209残基的环的运动对催化起限速作用。在此,与TSA结合的酶的NMR显示在皮秒至纳秒时间尺度上具有类似的刚性(平均S = 0.91±0.05),并且微秒至毫秒时间尺度上的动力学显著增加(77个残基;22%)。在TSA复合物的NMR Carr - Purcell - Meiboom - Gill(CPMG)N主链弛豫分散实验中显示出微秒至毫秒动力学的许多残基在无底物的酶中也是动态的。然而,TSA结合形式中存在额外的动态残基表明动力学延伸至大部分C端结构域,这表明在封闭形式中,更大比例的蛋白质参与到向激发态的构象转变中。TSA复合物的构象交换速率常数(k)均约为2500s,高于在无底物的酶中观察到的任何值(800 - 1900s)。与TSA结合的酶中微秒至毫秒时间尺度上蛋白质动力学的升高更符合最近提出的涉及反应每个步骤中多个相互连接状态的催化网络,而不是经典的单一稳定过渡态。