Suppr超能文献

早老素在衰老大脑神经元保护中的进化保守作用

An Evolutionarily Conserved Role of Presenilin in Neuronal Protection in the Aging Brain.

作者信息

Kang Jongkyun, Shin Sarah, Perrimon Norbert, Shen Jie

机构信息

Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115.

Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115

出版信息

Genetics. 2017 Jul;206(3):1479-1493. doi: 10.1534/genetics.116.196881. Epub 2017 May 11.

Abstract

Mutations in the genes are the major genetic cause of Alzheimer's disease. Presenilin and Nicastrin are essential components of γ-secretase, a multi-subunit protease that cleaves Type I transmembrane proteins. Genetic studies in mice previously demonstrated that conditional inactivation of Presenilin or Nicastrin in excitatory neurons of the postnatal forebrain results in memory deficits, synaptic impairment, and age-dependent neurodegeneration. The roles of () and () in the adult fly brain, however, are unknown. To knockdown (KD) or selectively in neurons of the adult brain, we generated multiple shRNA lines. Using a ubiquitous driver, these shRNA lines resulted in 80-90% reduction of mRNA and pupal lethality-a phenotype that is shared with and mutants carrying nonsense mutations. Furthermore, expression of these shRNAs in the wing disc caused notching wing phenotypes, which are also shared with and mutants. Similar to , neuron-specific KD using two independent shRNA lines led to early mortality and rough eye phenotypes, which were rescued by a fly transgene. Interestingly, conditional KD (cKD) of or in adult neurons using the and system caused shortened lifespan, climbing defects, increases in apoptosis, and age-dependent neurodegeneration. Together, these findings demonstrate that, similar to their mammalian counterparts, Psn and Nct are required for neuronal survival during aging and normal lifespan, highlighting an evolutionarily conserved role of Presenilin in neuronal protection in the aging brain.

摘要

这些基因的突变是阿尔茨海默病的主要遗传病因。早老素和尼卡斯特林是γ-分泌酶的重要组成部分,γ-分泌酶是一种能切割I型跨膜蛋白的多亚基蛋白酶。先前在小鼠中的遗传学研究表明,出生后前脑兴奋性神经元中早老素或尼卡斯特林的条件性失活会导致记忆缺陷、突触损伤和年龄依赖性神经退行性变。然而,()和()在成年果蝇大脑中的作用尚不清楚。为了在成年大脑的神经元中特异性敲低(KD)()或(),我们构建了多个shRNA品系。使用一种广泛表达的驱动子,这些shRNA品系导致mRNA减少80 - 90%以及蛹期致死——这是与携带无义突变的()和()突变体共有的一种表型。此外,这些shRNA在翅芽盘中的表达导致翅缺刻表型,这也是()和()突变体共有的。与()类似,使用两个独立的shRNA品系进行神经元特异性()敲低导致早期死亡和粗糙眼表型,这些表型可被果蝇()转基因拯救。有趣的是,使用()和()系统在成年神经元中对()或()进行条件性敲低(cKD)会导致寿命缩短、攀爬缺陷、凋亡增加以及年龄依赖性神经退行性变。总之,这些发现表明,与它们在哺乳动物中的对应物类似,在衰老和正常寿命期间,神经元存活需要()和(),这突出了早老素在衰老大脑中神经元保护方面的进化保守作用。

相似文献

1
An Evolutionarily Conserved Role of Presenilin in Neuronal Protection in the Aging Brain.
Genetics. 2017 Jul;206(3):1479-1493. doi: 10.1534/genetics.116.196881. Epub 2017 May 11.
4
Synaptic function of nicastrin in hippocampal neurons.
Proc Natl Acad Sci U S A. 2014 Jun 17;111(24):8973-8. doi: 10.1073/pnas.1408554111. Epub 2014 Jun 2.
7
Nicastrin is dispensable for gamma-secretase protease activity in the presence of specific presenilin mutations.
J Biol Chem. 2009 May 8;284(19):13013-22. doi: 10.1074/jbc.M807653200. Epub 2009 Mar 2.
8
p53-dependent control of cell death by nicastrin: lack of requirement for presenilin-dependent gamma-secretase complex.
J Neurochem. 2009 Apr;109(1):225-37. doi: 10.1111/j.1471-4159.2009.05952.x. Epub 2009 Feb 23.
9
The role of presenilin cofactors in the gamma-secretase complex.
Nature. 2003 Mar 27;422(6930):438-41. doi: 10.1038/nature01506. Epub 2003 Mar 16.
10
Evidence That the "Lid" Domain of Nicastrin Is Not Essential for Regulating γ-Secretase Activity.
J Biol Chem. 2016 Mar 25;291(13):6748-53. doi: 10.1074/jbc.C115.701649. Epub 2016 Feb 17.

引用本文的文献

2
Cortical neurodegeneration caused by mutations is independent of Aβ.
Proc Natl Acad Sci U S A. 2024 Aug 20;121(34):e2409343121. doi: 10.1073/pnas.2409343121. Epub 2024 Aug 13.
3
Altering heparan sulfate suppresses cell abnormalities and neuron loss in model of Alzheimer Disease.
iScience. 2024 Jul 2;27(7):110256. doi: 10.1016/j.isci.2024.110256. eCollection 2024 Jul 19.
5
TDP-43 impairs sleep in through -dependent metabolic disturbance.
Sci Adv. 2024 Jan 12;10(2):eadj4457. doi: 10.1126/sciadv.adj4457. Epub 2024 Jan 10.
7
Human Presenilin-1 delivered by AAV9 rescues impaired γ-secretase activity, memory deficits, and neurodegeneration in mutant mice.
Proc Natl Acad Sci U S A. 2023 Oct 17;120(42):e2306714120. doi: 10.1073/pnas.2306714120. Epub 2023 Oct 10.
9
Glycogen synthase kinase 3β (GSK3β) and presenilin (PS) are key regulators of kinesin-1-mediated cargo motility within axons.
Front Cell Dev Biol. 2023 Jun 9;11:1202307. doi: 10.3389/fcell.2023.1202307. eCollection 2023.
10
Ensheathing glia promote increased lifespan and healthy brain aging.
Aging Cell. 2023 May;22(5):e13803. doi: 10.1111/acel.13803. Epub 2023 Feb 24.

本文引用的文献

1
Loss of Aβ43 Production Caused by Presenilin-1 Mutations in the Knockin Mouse Brain.
Neuron. 2016 Apr 20;90(2):417-22. doi: 10.1016/j.neuron.2016.03.009.
3
An atomic structure of human γ-secretase.
Nature. 2015 Sep 10;525(7568):212-217. doi: 10.1038/nature14892. Epub 2015 Aug 17.
4
Presenilin-1 knockin mice reveal loss-of-function mechanism for familial Alzheimer's disease.
Neuron. 2015 Mar 4;85(5):967-81. doi: 10.1016/j.neuron.2015.02.010.
5
Partial loss of presenilin impairs age-dependent neuronal survival in the cerebral cortex.
J Neurosci. 2014 Nov 26;34(48):15912-22. doi: 10.1523/JNEUROSCI.3261-14.2014.
6
Synaptic function of nicastrin in hippocampal neurons.
Proc Natl Acad Sci U S A. 2014 Jun 17;111(24):8973-8. doi: 10.1073/pnas.1408554111. Epub 2014 Jun 2.
7
Presenilins regulate calcium homeostasis and presynaptic function via ryanodine receptors in hippocampal neurons.
Proc Natl Acad Sci U S A. 2013 Sep 10;110(37):15091-6. doi: 10.1073/pnas.1304171110. Epub 2013 Aug 5.
8
Trans-dominant negative effects of pathogenic PSEN1 mutations on γ-secretase activity and Aβ production.
J Neurosci. 2013 Jul 10;33(28):11606-17. doi: 10.1523/JNEUROSCI.0954-13.2013.
10
Presenilins in synaptic function and disease.
Trends Mol Med. 2011 Nov;17(11):617-24. doi: 10.1016/j.molmed.2011.06.002. Epub 2011 Jul 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验