Suppr超能文献

腺相关病毒 9 载体递送的人早老素 1 可挽救 突变小鼠中受损的 γ-分泌酶活性、记忆缺陷和神经退行性变。

Human Presenilin-1 delivered by AAV9 rescues impaired γ-secretase activity, memory deficits, and neurodegeneration in mutant mice.

机构信息

Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115.

Program in Neuroscience, Harvard Medical School, Boston, MA 02115.

出版信息

Proc Natl Acad Sci U S A. 2023 Oct 17;120(42):e2306714120. doi: 10.1073/pnas.2306714120. Epub 2023 Oct 10.

Abstract

Mutations in the ( and ) genes are the major cause of early-onset familial Alzheimer's disease (FAD). Presenilin (PS) is the catalytic subunit of the γ-secretase complex, which cleaves type I transmembrane proteins, such as Notch and the amyloid precursor protein (APP), and plays an evolutionarily conserved role in the protection of neuronal survival during aging. FAD mutations exhibit impaired γ-secretase activity in cell culture, in vitro, and knockin (KI) mouse brains, and the L435F mutation is the most severe in reducing γ-secretase activity and is located closest to the active site of γ-secretase. Here, we report that introduction of the codon-optimized wild-type human cDNA by adeno-associated virus 9 (AAV9) results in broadly distributed, sustained, low to moderate levels of human PS1 (hPS1) expression and rescues impaired γ-secretase activity in the cerebral cortex of mutant mice either lacking PS or expressing the L435F KI allele, as evaluated by endogenous γ-secretase substrates of APP and recombinant γ-secretase products of Notch intracellular domain and Aβ peptides. Furthermore, introduction of hPS1 by AAV9 alleviates impairments of synaptic plasticity and learning and memory in mutant mice. Importantly, AAV9 delivery of hPS1 ameliorates neurodegeneration in the cerebral cortex of aged mutant mice, as shown by the reversal of age-dependent loss of cortical neurons and elevated microgliosis and astrogliosis. These results together show that moderate hPS1 expression by AAV9 is sufficient to rescue impaired γ-secretase activity, synaptic and memory deficits, and neurodegeneration caused by mutations in mouse models.

摘要

(和)基因突变是早发性家族性阿尔茨海默病(FAD)的主要原因。早老素(PS)是γ-分泌酶复合物的催化亚基,它切割Ⅰ型跨膜蛋白,如 Notch 和淀粉样前体蛋白(APP),并在保护神经元在衰老过程中的存活方面发挥着保守作用。FAD 突变在细胞培养、体外和敲入(KI)小鼠大脑中表现出γ-分泌酶活性受损,而 L435F 突变在降低γ-分泌酶活性方面最为严重,并且位于γ-分泌酶活性位点附近。在这里,我们报告说,通过腺相关病毒 9(AAV9)引入密码子优化的野生型人 PS1 cDNA,导致广泛分布、持续、低至中度水平的人 PS1(hPS1)表达,并挽救了缺乏 PS 或表达 L435F KI 等位基因的 突变小鼠大脑皮质中受损的γ-分泌酶活性,通过 APP 的内源性 γ-分泌酶底物和 Notch 细胞内域和 Aβ 肽的重组 γ-分泌酶产物进行评估。此外,AAV9 引入 hPS1 可减轻 突变小鼠的突触可塑性和学习记忆损伤。重要的是,AAV9 递送 hPS1 可改善老年 突变小鼠大脑皮质中的神经退行性变,表现为皮质神经元的年龄依赖性丧失逆转以及小胶质细胞和星形胶质细胞的上调。这些结果共同表明,AAV9 中等水平的 hPS1 表达足以挽救由小鼠模型中的 PS 基因突变引起的γ-分泌酶活性、突触和记忆缺陷以及神经退行性变。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b27b/10589670/79fd621dd73c/pnas.2306714120fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验