Suppr超能文献

利用多种基因组数据优先考虑外显子测序数据中的致病变异。

Leveraging multiple genomic data to prioritize disease-causing indels from exome sequencing data.

机构信息

MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic and Systems Biology, TNLIST, Tsinghua University, Beijing, 100084, China.

Department of Computer Science, Tsinghua University, Beijing, 100084, China.

出版信息

Sci Rep. 2017 May 11;7(1):1804. doi: 10.1038/s41598-017-01834-w.

Abstract

The emergence of exome sequencing in recent years has enabled rapid and cost-effective detection of genetic variants in coding regions and offers a great opportunity to combine sequencing experiments with subsequent computational analysis for dissecting genetic basis of human inherited diseases. However, this strategy, though successful in practice, still faces such challenges as limited sample size and substantial number or diversity of candidate variants. To overcome these obstacles, researchers have been concentrated in the development of advanced computational methods and have recently achieved great progress for analysing single nucleotide variant. Nevertheless, it still remains unclear on how to analyse indels, another type of genetic variant that accounts for substantial proportion of known disease-causing variants. In this paper, we proposed an integrative method to effectively identify disease-causing indels from exome sequencing data. Specifically, we put forward a statistical method to combine five functional prediction scores, four genic association scores and a genic intolerance score to produce an integrated p-value, which could then be used for prioritizing candidate indels. We performed extensive simulation studies and demonstrated that our method achieved high accuracy in uncovering disease-causing indels. Our software is available at http://bioinfo.au.tsinghua.edu.cn/jianglab/IndelPrioritizer/.

摘要

近年来外显子组测序的出现使得在编码区域中快速且经济有效地检测遗传变异成为可能,并为将测序实验与后续的计算分析相结合,以剖析人类遗传疾病的遗传基础提供了极好的机会。然而,尽管这种策略在实践中取得了成功,但仍然面临着一些挑战,例如样本量有限和候选变异数量或多样性很大。为了克服这些障碍,研究人员专注于开发先进的计算方法,并在最近对分析单核苷酸变异取得了重大进展。然而,如何分析插入缺失(indels),即占已知致病变异很大比例的另一种遗传变异类型,仍然不清楚。在本文中,我们提出了一种综合方法,可有效地从外显子组测序数据中识别致病插入缺失。具体来说,我们提出了一种统计方法,将五个功能预测评分、四个基因关联评分和一个基因耐受评分相结合,产生一个综合 p 值,然后可以用于优先考虑候选插入缺失。我们进行了广泛的模拟研究,并证明我们的方法在发现致病插入缺失方面具有很高的准确性。我们的软件可在 http://bioinfo.au.tsinghua.edu.cn/jianglab/IndelPrioritizer/ 获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/284e/5431795/705d16fb6534/41598_2017_1834_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验