Suppr超能文献

抗真菌药物研发进展:现实审视。

The antifungal pipeline: a reality check.

作者信息

Perfect John R

机构信息

Duke University Medical Center, 200 Trent Drive, Durham, North Carolina 27710, USA.

出版信息

Nat Rev Drug Discov. 2017 Sep;16(9):603-616. doi: 10.1038/nrd.2017.46. Epub 2017 May 12.

Abstract

Invasive fungal infections continue to appear in record numbers as the immunocompromised population of the world increases, owing partially to the increased number of individuals who are infected with HIV and partially to the successful treatment of serious underlying diseases. The effectiveness of current antifungal therapies - polyenes, flucytosine, azoles and echinocandins (as monotherapies or in combinations for prophylaxis, or as empiric, pre-emptive or specific therapies) - in the management of these infections has plateaued. Although these drugs are clinically useful, they have several limitations, such as off-target toxicity, and drug-resistant fungi are now emerging. New antifungals are therefore needed. In this Review, I discuss the robust and dynamic antifungal pipeline, including results from preclinical academic efforts through to pharmaceutical industry products, and describe the targets, strategies, compounds and potential outcomes.

摘要

随着全球免疫功能低下人群数量的增加,侵袭性真菌感染的病例数持续创下新高,部分原因是感染艾滋病毒的人数增多,部分原因是严重基础疾病的成功治疗。目前的抗真菌疗法——多烯类、氟胞嘧啶、唑类和棘白菌素类(作为单一疗法或联合用于预防,或作为经验性、先发制性或特异性疗法)——在治疗这些感染方面的效果已趋于平稳。尽管这些药物在临床上有用,但它们有几个局限性,如脱靶毒性,而且耐药真菌正在出现。因此需要新的抗真菌药物。在这篇综述中,我讨论了丰富且动态发展的抗真菌药物研发进程,包括从临床前学术研究成果到制药行业产品,并描述了靶点、策略、化合物和潜在结果。

相似文献

1
The antifungal pipeline: a reality check.
Nat Rev Drug Discov. 2017 Sep;16(9):603-616. doi: 10.1038/nrd.2017.46. Epub 2017 May 12.
2
Innovative therapies for invasive fungal infections in preclinical and clinical development.
Expert Opin Investig Drugs. 2020 Sep;29(9):961-971. doi: 10.1080/13543784.2020.1791819. Epub 2020 Aug 6.
3
Combinatorial strategies for combating invasive fungal infections.
Virulence. 2017 Feb 17;8(2):169-185. doi: 10.1080/21505594.2016.1196300. Epub 2016 Jun 7.
5
Antifungals.
Biochem Pharmacol. 2017 Jun 1;133:86-96. doi: 10.1016/j.bcp.2016.11.019. Epub 2016 Nov 21.
6
Antifungal Therapy: New and Evolving Therapies.
Semin Respir Crit Care Med. 2020 Feb;41(1):158-174. doi: 10.1055/s-0039-3400291. Epub 2020 Jan 30.
7
Setting New Routes for Antifungal Drug Discovery Against Pathogenic Fungi.
Curr Pharm Des. 2020;26(14):1509-1520. doi: 10.2174/1381612826666200317125956.
8
Emerging New Targets for the Treatment of Resistant Fungal Infections.
J Med Chem. 2018 Jul 12;61(13):5484-5511. doi: 10.1021/acs.jmedchem.7b01413. Epub 2018 Jan 16.
9
Antifungals discovery: an insight into new strategies to combat antifungal resistance.
Lett Appl Microbiol. 2018 Jan;66(1):2-13. doi: 10.1111/lam.12820. Epub 2017 Dec 11.
10
Antifungals in Clinical Use and the Pipeline.
Infect Dis Clin North Am. 2021 Jun;35(2):341-371. doi: 10.1016/j.idc.2021.03.005.

引用本文的文献

1
Next-generation antifungal drugs: Mechanisms, efficacy, and clinical prospects.
Acta Pharm Sin B. 2025 Aug;15(8):3852-3887. doi: 10.1016/j.apsb.2025.06.013. Epub 2025 Jun 23.
3
Overcoming Global Antifungal Challenges: Medical and Agricultural Aspects.
ACS Bio Med Chem Au. 2025 Jul 2;5(4):531-552. doi: 10.1021/acsbiomedchemau.5c00103. eCollection 2025 Aug 20.
4
Structural basis for transport and inhibition of nucleotide sugar transport in pathogenic fungi.
Res Sq. 2025 Aug 5:rs.3.rs-7213965. doi: 10.21203/rs.3.rs-7213965/v1.
10
Mechanisms of aureobasidin A inhibition and drug resistance in a fungal IPC synthase complex.
Nat Commun. 2025 May 30;16(1):5010. doi: 10.1038/s41467-025-60423-y.

本文引用的文献

1
A calcineurin antifungal strategy with analogs of FK506.
Bioorg Med Chem Lett. 2017 Jun 1;27(11):2465-2471. doi: 10.1016/j.bmcl.2017.04.004. Epub 2017 Apr 3.
2
JNK1 negatively controls antifungal innate immunity by suppressing CD23 expression.
Nat Med. 2017 Mar;23(3):337-346. doi: 10.1038/nm.4260. Epub 2017 Jan 23.
3
F901318 represents a novel class of antifungal drug that inhibits dihydroorotate dehydrogenase.
Proc Natl Acad Sci U S A. 2016 Nov 8;113(45):12809-12814. doi: 10.1073/pnas.1608304113. Epub 2016 Oct 25.
5
Carbon extension in peptidylnucleoside biosynthesis by radical SAM enzymes.
Nat Chem Biol. 2016 Nov;12(11):905-907. doi: 10.1038/nchembio.2187. Epub 2016 Sep 19.
6
Aspergillus vaccines: Hardly worth studying or worthy of hard study?
Med Mycol. 2017 Jan 1;55(1):103-108. doi: 10.1093/mmy/myw081. Epub 2016 Sep 17.
7
Cryptococcus neoformans population diversity and clinical outcomes of HIV-associated cryptococcal meningitis patients in Zimbabwe.
J Med Microbiol. 2016 Nov;65(11):1281-1288. doi: 10.1099/jmm.0.000354. Epub 2016 Sep 13.
8
Preclinical Evaluation of the Stability, Safety, and Efficacy of CD101, a Novel Echinocandin.
Antimicrob Agents Chemother. 2016 Oct 21;60(11):6872-6879. doi: 10.1128/AAC.00701-16. Print 2016 Nov.
9
ASP2397: a novel antifungal agent produced by Acremonium persicinum MF-347833.
J Antibiot (Tokyo). 2017 Jan;70(1):45-51. doi: 10.1038/ja.2016.107. Epub 2016 Sep 7.
10
Discovery of a new antifungal agent ASP2397 using a silkworm model of Aspergillus fumigatus infection.
J Antibiot (Tokyo). 2017 Jan;70(1):41-44. doi: 10.1038/ja.2016.106. Epub 2016 Aug 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验