Suppr超能文献

在氧化石墨烯非溶剂中相转化的聚砜-氧化石墨烯复合膜的膜性能及抗菌/抗生物污染活性

Membrane properties and anti-bacterial/anti-biofouling activity of polysulfone-graphene oxide composite membranes phase inversed in graphene oxide non-solvent.

作者信息

Mokkapati V R S S, Koseoglu-Imer Derya Yuksel, Yilmaz-Deveci Nurmiray, Mijakovic Ivan, Koyuncu Ismail

机构信息

Department of Biology and Biological Engineering , Chalmers University of Technology , Kemivagen 10 , 41296 , Goteborg , Sweden . Email:

Nanotechnology Research and Application Center (SUNUM) , Sabanci University , Orhanli/Tuzla , Istanbul 34956 , Turkey.

出版信息

RSC Adv. 2017 Jan 16;7(8):4378-4386. doi: 10.1039/c6ra25015g.

Abstract

A new and facile method for the fabrication of polysulfone-graphene oxide composite membranes is reported, where after casting, phase inversion is carried out with graphene oxide flakes (GO) in a coagulation bath. The membranes were characterized and the morphology was analysed using scanning electron microscopy. A bacterial inhibition ratio of 74.5% was observed with membranes fabricated from a very low concentration of di-water-GO non-solvent (0.048% of GO). The membranes were successfully tested for permeate flux and fouling resistance using activated sludge filtration from an MBR system. The observed trend shows that GO can operate as a protective barrier for membrane pores against the bacterial community. To our knowledge this is the first time where the immersion precipitation mechanism was carried out in a coagulation bath with GO flakes under continuous stirring. Using this method, a very low concentration of GO is required to fabricate membranes with conventional GO composite membrane properties and better selectivity.

摘要

报道了一种制备聚砜-氧化石墨烯复合膜的新颖且简便的方法,即在浇铸后,于凝固浴中用氧化石墨烯薄片(GO)进行相转化。对这些膜进行了表征,并使用扫描电子显微镜分析了其形态。由极低浓度的去离子水-GO非溶剂(0.048%的GO)制备的膜观察到74.5%的抑菌率。使用来自膜生物反应器系统的活性污泥过滤对这些膜的渗透通量和抗污染性能进行了成功测试。观察到的趋势表明,GO可作为膜孔抵御细菌群落的保护屏障。据我们所知,这是首次在连续搅拌下于凝固浴中用GO薄片进行浸没沉淀机理的研究。使用该方法,只需极低浓度的GO就能制备出具有传统GO复合膜性能和更好选择性的膜。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6bf1/5361168/e20ed821a955/c6ra25015g-f3.jpg

相似文献

2
Preparation, characterisation and critical flux determination of graphene oxide blended polysulfone (PSf) membranes in an MBR system.
J Environ Manage. 2018 May 1;213:168-179. doi: 10.1016/j.jenvman.2018.02.063. Epub 2018 Feb 26.
3
Synthesis and characterization of polysulfone/graphene oxide nano-composite membranes for removal of bisphenol A from water.
J Environ Manage. 2018 Jan 1;205:174-182. doi: 10.1016/j.jenvman.2017.09.074. Epub 2017 Oct 3.
4
Janus graphene oxide nanosheet: A promising additive for enhancement of polymeric membranes performance prepared via phase inversion.
J Colloid Interface Sci. 2018 Oct 1;527:10-24. doi: 10.1016/j.jcis.2018.05.012. Epub 2018 May 16.
6
Ibuprofen Removal by Graphene Oxide and Reduced Graphene Oxide Coated Polysulfone Nanofiltration Membranes.
Membranes (Basel). 2022 May 28;12(6):562. doi: 10.3390/membranes12060562.
7
Graphene Oxide (GO)-Blended Polysulfone (PSf) Ultrafiltration Membranes for Lead Ion Rejection.
Membranes (Basel). 2018 Sep 6;8(3):77. doi: 10.3390/membranes8030077.
9
Emulsion Assembly of Graphene Oxide/Polymer Composite Membranes.
ACS Appl Mater Interfaces. 2023 May 3;15(17):21384-21393. doi: 10.1021/acsami.3c02636. Epub 2023 Apr 18.

引用本文的文献

1
Polycation-Intercalated MXene Membrane with Enhanced Permselective and Anti-Microbial Properties.
Nanomaterials (Basel). 2023 Oct 31;13(21):2885. doi: 10.3390/nano13212885.
3
Graphene: An Antibacterial Agent or a Promoter of Bacterial Proliferation?
iScience. 2020 Nov 11;23(12):101787. doi: 10.1016/j.isci.2020.101787. eCollection 2020 Dec 18.
5
Graphene Oxide (GO)-Blended Polysulfone (PSf) Ultrafiltration Membranes for Lead Ion Rejection.
Membranes (Basel). 2018 Sep 6;8(3):77. doi: 10.3390/membranes8030077.

本文引用的文献

1
Endoperoxides Revealed as Origin of the Toxicity of Graphene Oxide.
Angew Chem Int Ed Engl. 2016 Jan 4;55(1):405-7. doi: 10.1002/anie.201507070. Epub 2015 Nov 9.
2
Fabrication and characterization of a polysulfone-graphene oxide nanocomposite membrane for arsenate rejection from water.
J Environ Health Sci Eng. 2015 Aug 22;13:61. doi: 10.1186/s40201-015-0217-8. eCollection 2015.
3
Antimicrobial Properties of Graphene Oxide Nanosheets: Why Size Matters.
ACS Nano. 2015 Jul 28;9(7):7226-36. doi: 10.1021/acsnano.5b02067. Epub 2015 Jun 25.
4
Synthetic routes contaminate graphene materials with a whole spectrum of unanticipated metallic elements.
Proc Natl Acad Sci U S A. 2014 Sep 23;111(38):13774-9. doi: 10.1073/pnas.1413389111. Epub 2014 Sep 8.
5
How microorganisms use hydrophobicity and what does this mean for human needs?
Front Cell Infect Microbiol. 2014 Aug 19;4:112. doi: 10.3389/fcimb.2014.00112. eCollection 2014.
6
Reactive oxygen species and the bacterial response to lethal stress.
Curr Opin Microbiol. 2014 Oct;21:1-6. doi: 10.1016/j.mib.2014.06.008. Epub 2014 Jul 30.
8
Lateral dimension-dependent antibacterial activity of graphene oxide sheets.
Langmuir. 2012 Aug 21;28(33):12364-72. doi: 10.1021/la3023908. Epub 2012 Aug 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验