Malinverni Duccio, Jost Lopez Alfredo, De Los Rios Paolo, Hummer Gerhard, Barducci Alessandro
Laboratoire de Biophysique Statistique, Faculté de Sciences de Base, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
Elife. 2017 May 12;6:e23471. doi: 10.7554/eLife.23471.
The interaction between the Heat Shock Proteins 70 and 40 is at the core of the ATPase regulation of the chaperone machinery that maintains protein homeostasis. However, the structural details of the interaction remain elusive and contrasting models have been proposed for the transient Hsp70/Hsp40 complexes. Here we combine molecular simulations based on both coarse-grained and atomistic models with coevolutionary sequence analysis to shed light on this problem by focusing on the bacterial DnaK/DnaJ system. The integration of these complementary approaches resulted in a novel structural model that rationalizes previous experimental observations. We identify an evolutionarily conserved interaction surface formed by helix II of the DnaJ J-domain and a structurally contiguous region of DnaK, involving lobe IIA of the nucleotide binding domain, the inter-domain linker, and the β-basket of the substrate binding domain.
热休克蛋白70(Hsp70)和40(Hsp40)之间的相互作用是维持蛋白质稳态的伴侣机制中ATP酶调节的核心。然而,这种相互作用的结构细节仍然难以捉摸,并且针对瞬时Hsp70/Hsp40复合物提出了相互矛盾的模型。在这里,我们将基于粗粒度和原子模型的分子模拟与共进化序列分析相结合,通过聚焦细菌DnaK/DnaJ系统来阐明这个问题。这些互补方法的整合产生了一个新颖的结构模型,该模型使先前的实验观察结果合理化。我们确定了一个由DnaJ J结构域的螺旋II和DnaK的一个结构连续区域形成的进化保守相互作用表面,该区域涉及核苷酸结合结构域的IIA叶、结构域间连接子以及底物结合结构域的β篮。