Suppr超能文献

用于大规模无线传感器应用的低成本嵌套MIMO阵列。

Low-Cost Nested-MIMO Array for Large-Scale Wireless Sensor Applications.

作者信息

Zhang Duo, Wu Wen, Fang Dagang, Wang Wenqin, Cui Can

机构信息

Ministerial Key Laboratory of JGMT, School of Electronic Engineering and Optoelectronic Technology, Nanjing University of Science and Technology, Nanjing 210094, China.

School of Communication and Information Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.

出版信息

Sensors (Basel). 2017 May 12;17(5):1105. doi: 10.3390/s17051105.

Abstract

In modern communication and radar applications, large-scale sensor arrays have increasingly been used to improve the performance of a system. However, the hardware cost and circuit power consumption scale linearly with the number of sensors, which makes the whole system expensive and power-hungry. This paper presents a low-cost nested multiple-input multiple-output (MIMO) array, which is capable of providing O ( 2 N 2 ) degrees of freedom (DOF) with O ( N ) physical sensors. The sensor locations of the proposed array have closed-form expressions. Thus, the aperture size and number of DOF can be predicted as a function of the total number of sensors. Additionally, with the help of time-sequence-phase-weighting (TSPW) technology, only one receiver channel is required for sampling the signals received by all of the sensors, which is conducive to reducing the hardware cost and power consumption. Numerical simulation results demonstrate the effectiveness and superiority of the proposed array.

摘要

在现代通信和雷达应用中,大规模传感器阵列越来越多地被用于提高系统性能。然而,硬件成本和电路功耗与传感器数量成线性比例增长,这使得整个系统成本高昂且功耗巨大。本文提出了一种低成本的嵌套多输入多输出(MIMO)阵列,它能够用O(N)个物理传感器提供O(2N²)的自由度(DOF)。所提出阵列的传感器位置具有闭式表达式。因此,孔径大小和自由度数量可以作为传感器总数的函数进行预测。此外,借助时间序列相位加权(TSPW)技术,仅需一个接收通道对所有传感器接收到的信号进行采样,这有利于降低硬件成本和功耗。数值模拟结果证明了所提阵列的有效性和优越性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80a2/5470495/dfc0482c6a8d/sensors-17-01105-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验