Matsui Shigeyuki, Noma Hisashi, Qu Pingping, Sakai Yoshio, Matsui Kota, Heuck Christoph, Crowley John
Department of Biostatistics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan.
Department of Data Science, The Institute of Statistical Mathematics, Tachikawa, Tokyo, Japan.
Biometrics. 2018 Mar;74(1):313-320. doi: 10.1111/biom.12716. Epub 2017 May 12.
This article proposes an efficient approach to screening genes associated with a phenotypic variable of interest in genomic studies with subgroups. In order to capture and detect various association profiles across subgroups, we flexibly estimate the underlying effect size distribution across subgroups using a semi-parametric hierarchical mixture model for subgroup-specific summary statistics from independent subgroups. We then perform gene ranking and selection using an optimal discovery procedure based on the fitted model with control of false discovery rate. Efficiency of the proposed approach, compared with that based on standard regression models with covariates representing subgroups, is demonstrated through application to a randomized clinical trial with microarray gene expression data in multiple myeloma, and through a simulation experiment.
本文提出了一种在具有亚组的基因组研究中筛选与感兴趣的表型变量相关基因的有效方法。为了捕捉和检测亚组间的各种关联特征,我们使用半参数分层混合模型,针对来自独立亚组的亚组特异性汇总统计量,灵活地估计亚组间潜在的效应大小分布。然后,我们基于拟合模型,采用控制错误发现率的最优发现程序进行基因排序和选择。通过应用于一项多发性骨髓瘤微阵列基因表达数据的随机临床试验以及一个模拟实验,证明了所提方法相较于基于用代表亚组的协变量的标准回归模型的方法的效率。