Krasny Witold, Morin Claire, Magoariec Hélène, Avril Stéphane
Ecole Nationale Supérieure des Mines de Saint-Etienne, CIS-EMSE, SAINBIOSE, F-42023 Saint Etienne, France; INSERM, U1059, F-42000 Saint Etienne, France; Université de Lyon, SAINBIOSE, F-42000 Saint Etienne, France; Laboratoire de Tribologie et Dynamique des Systèmes, CNRS UMR 5513, Université de Lyon, Ecole Centrale Lyon, France.
Ecole Nationale Supérieure des Mines de Saint-Etienne, CIS-EMSE, SAINBIOSE, F-42023 Saint Etienne, France; INSERM, U1059, F-42000 Saint Etienne, France; Université de Lyon, SAINBIOSE, F-42000 Saint Etienne, France.
Acta Biomater. 2017 Jul 15;57:342-351. doi: 10.1016/j.actbio.2017.04.033. Epub 2017 May 9.
The load bearing properties of large blood vessels are principally conferred by collagen and elastin networks and their microstructural organization plays an important role in the outcomes of various arterial pathologies. In particular, these fibrous networks are able to rearrange and reorient spatially during mechanical deformations. In this study, we investigate for the first time whether these well-known morphological rearrangements are the same across the whole thickness of blood vessels, and subsequently if the underlying mechanisms that govern these rearrangements can be predicted using affine kinematics. To this aim, we submitted rabbit carotid samples to uniaxial load in three distinct deformation directions, while recording live images of the 3D microstructure using multiphoton microscopy. Our results show that the observed realignment of collagen and elastin in the media layer, along with elastin of the adventitia layer, remained limited to small angles that can be predicted by affine kinematics. We show also that collagen bundles of fibers in the adventitia layer behaved in significantly different fashion. They showed a remarkable capacity to realign in the direction of the load, whatever the loading direction. Measured reorientation angles of the fibers were significantly higher than affine predictions. This remarkable property of collagen bundles in the adventitia was never observed before, it shows that the medium surrounding collagen in the adventitia undergoes complex deformations challenging traditional hyperelastic models based on mixture theories.
The biomechanical properties of arteries are conferred by the rearrangement under load of the collagen and elastin fibers making up the arterial microstructure. Their kinematics under deformation is not yet characterized for all fiber networks. In this respect we have submitted samples of arterial tissue to uniaxial tension, simultaneously to confocal imaging of their microstructure. Our method allowed identifying for the first time the remarkable ability of adventitial collagen fibers to reorient in the direction of the load, achieving reorientation rotations that exceeded those predicted by affine kinematics, while all other networks followed the affine kinematics. Our results highlight new properties of the microstructure, which might play a role in the outcomes of vascular pathologies like aneurysms.
大血管的承载特性主要由胶原蛋白和弹性蛋白网络赋予,其微观结构组织在各种动脉病变的结果中起着重要作用。特别是,这些纤维网络在机械变形过程中能够在空间上重新排列和重新定向。在本研究中,我们首次研究了这些众所周知的形态重排在血管全层是否相同,以及随后是否可以使用仿射运动学预测控制这些重排的潜在机制。为此,我们将兔颈动脉样本在三个不同的变形方向上进行单轴加载,同时使用多光子显微镜记录三维微观结构的实时图像。我们的结果表明,在中膜层观察到的胶原蛋白和弹性蛋白的重新排列,以及外膜层的弹性蛋白,仍然局限于可以通过仿射运动学预测的小角度。我们还表明,外膜层中的胶原纤维束表现出显著不同的行为。无论加载方向如何,它们都表现出在载荷方向上重新排列的显著能力。测量的纤维重新定向角度明显高于仿射预测值。外膜中胶原纤维束的这种显著特性以前从未被观察到,它表明外膜中围绕胶原的介质经历了复杂的变形,这对基于混合理论的传统超弹性模型提出了挑战。
动脉的生物力学特性是由构成动脉微观结构的胶原蛋白和弹性蛋白纤维在载荷下的重排赋予的。它们在变形下的运动学尚未针对所有纤维网络进行表征。在这方面,我们将动脉组织样本进行单轴拉伸,同时对其微观结构进行共聚焦成像。我们的方法首次使我们能够识别外膜胶原纤维在载荷方向上重新定向的显著能力,实现超过仿射运动学预测的重新定向旋转,而所有其他网络都遵循仿射运动学。我们的结果突出了微观结构新特性,这些特性可能在动脉瘤等血管病变的结果中发挥作用。