Mesquita Thássio R R, Campos-Mota Gianne P, Lemos Virgínia S, Cruz Jader S, de Jesus Itamar C G, Camargo Enilton A, Pesquero Jorge L, Pesquero João B, Capettini Luciano Dos Santos A, Lauton-Santos Sandra
Department of Physiology, Federal University of SergipeSão Cristóvão, Brazil.
Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas GeraisBelo Horizonte, Brazil.
Front Physiol. 2017 Apr 28;8:228. doi: 10.3389/fphys.2017.00228. eCollection 2017.
B- and B-kinin receptors are G protein-coupled receptors that play an important role in the vascular function. Therefore, the present study was designed to evaluate the participation of kinin receptors in the acetylcholine (ACh)-induced vascular relaxation, focusing on the protein-protein interaction involving kinin receptors with endothelial and neuronal nitric oxide synthases (eNOS and nNOS). Vascular reactivity, nitric oxide (NO·) and reactive oxygen species (ROS) generation, co-immunoprecipitation were assessed in thoracic aorta from male wild-type (WT), B- (BR), B- (BR) knockout mice. Some vascular reactivity experiments were also performed in a double kinin receptors knockout mice (BBR). For pharmacological studies, selective B- and B-kinin receptors antagonists, NOS inhibitors and superoxide dismutase (SOD) mimetic were used. First, we show that B- and B-kinin receptors form heteromers with nNOS and eNOS in thoracic aorta. To investigate the functionality of these protein-protein interactions, we took advantage of pharmacological tools and knockout mice. Importantly, our results show that kinin receptors regulate ACh-induced relaxation via nNOS signaling in thoracic aorta with no changes in NO· donor-induced relaxation. Interestingly, BBR presented similar level of vascular dysfunction as found in BR or BR mice. In accordance, aortic rings from BR or BR mice exhibit decreased NO· bioavailability and increased superoxide generation compared to WT mice, suggesting the involvement of excessive ROS generation in the endothelial dysfunction of BR and BR mice. Alongside, we show that impaired endothelial vasorelaxation induced by ACh in BR or BR mice was rescued by the SOD mimetic compound. Taken together, our findings show that B- and B-kinin receptors regulate the endothelium-dependent vasodilation of ACh through nNOS activity and indicate that molecular disturbance of short-range interaction between B- and B-kinin receptors with nNOS might be involved in the oxidative pathogenesis of endothelial dysfunction.
B1-和B2-激肽受体是G蛋白偶联受体,在血管功能中发挥重要作用。因此,本研究旨在评估激肽受体在乙酰胆碱(ACh)诱导的血管舒张中的作用,重点关注激肽受体与内皮型和神经元型一氧化氮合酶(eNOS和nNOS)之间的蛋白质-蛋白质相互作用。在雄性野生型(WT)、B1-(B1R)、B2-(B2R)基因敲除小鼠的胸主动脉中评估血管反应性、一氧化氮(NO·)和活性氧(ROS)生成、免疫共沉淀。还在双激肽受体基因敲除小鼠(B1B2R)中进行了一些血管反应性实验。对于药理学研究,使用了选择性B1-和B2-激肽受体拮抗剂、NOS抑制剂和超氧化物歧化酶(SOD)模拟物。首先,我们发现B1-和B2-激肽受体在胸主动脉中与nNOS和eNOS形成异源二聚体。为了研究这些蛋白质-蛋白质相互作用的功能,我们利用了药理学工具和基因敲除小鼠。重要的是,我们的结果表明,激肽受体通过nNOS信号通路调节胸主动脉中ACh诱导的舒张,而NO·供体诱导的舒张没有变化。有趣的是,B1B2R表现出与B1R或B2R小鼠相似程度的血管功能障碍。相应地,与WT小鼠相比,B1R或B2R小鼠的主动脉环显示NO·生物利用度降低和超氧化物生成增加,表明过量ROS生成参与了B1R和B2R小鼠的内皮功能障碍。此外,我们表明,SOD模拟化合物可挽救B1R或B2R小鼠中ACh诱导的内皮血管舒张受损。综上所述,我们的研究结果表明,B1-和B2-激肽受体通过nNOS活性调节ACh的内皮依赖性血管舒张,并表明B1-和B2-激肽受体与nNOS之间短程相互作用的分子紊乱可能参与内皮功能障碍的氧化发病机制。