Department of Chemistry, Zhejiang University, Hangzhou, 310028, Zhejiang, China.
Shanghai Key Laboratory of Functional Materials Chemistry, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China.
Angew Chem Int Ed Engl. 2017 Aug 7;56(33):9747-9751. doi: 10.1002/anie.201703938. Epub 2017 May 30.
The adsorption of molecules on metal nanoparticles can be sterically controlled through the use of zeolite crystals, which enhances the product selectivity in hydrogenations of reactants with more than one reducible group. Key to this success was the fixation of Pd nanoparticles inside Beta zeolite crystals to form a defined structure (Pd@Beta). In the hydrogenation of substituted nitroarenes with multiple reducible groups as a model reaction, the Pd@Beta catalyst exhibited superior selectivity for hydrogenation of the nitro group, outperforming both conventional Pd nanoparticles supported on zeolite crystals and a commercial Pd/C catalyst. The extraordinary selectivity of Pd@Beta was attributed to the sterically selective adsorption of the nitroarenes on the Pd nanoparticles controlled by the zeolite micropores, as elucidated by competitive adsorption and adsorbate displacement tests. Importantly, this strategy is general and was extended to the synthesis of selective Pt and Ru catalysts by fixation inside Beta and mordenite zeolites.
通过使用沸石晶体可以控制金属纳米粒子上分子的吸附,从而提高具有多个可还原基团的反应物加氢反应的产物选择性。这一成功的关键是将钯纳米粒子固定在β沸石晶体内部,形成一种确定的结构(Pd@Beta)。在以取代的硝基芳烃作为模型反应的多可还原基团加氢反应中,Pd@Beta 催化剂对硝基加氢表现出更高的选择性,优于负载在沸石晶体上的常规 Pd 纳米粒子和商业 Pd/C 催化剂。Pd@Beta 的非凡选择性归因于硝基芳烃在沸石微孔控制下对 Pd 纳米粒子的空间选择性吸附,这通过竞争性吸附和吸附质置换测试得到了阐明。重要的是,这种策略具有普遍性,并通过固定在β沸石和丝光沸石内部扩展到合成选择性 Pt 和 Ru 催化剂。