BorsodChem Ltd., Bolyai tér 1, H-3700 Kazincbarcika, Hungary.
Institute of Chemistry, Faculty of Materials Science and Engineering, University of Miskolc, H-3515 Miskolc-Egyetemváros, Hungary.
Int J Mol Sci. 2023 Jul 14;24(14):11461. doi: 10.3390/ijms241411461.
Utilization of multivariate data analysis in catalysis research has extraordinary importance. The aim of the MIRA21 (MIskolc RAnking 21) model is to characterize heterogeneous catalysts with bias-free quantifiable data from 15 different variables to standardize catalyst characterization and provide an easy tool to compare, rank, and classify catalysts. The present work introduces and mathematically validates the MIRA21 model by identifying fundamentals affecting catalyst comparison and provides support for catalyst design. Literature data of 2,4-dinitrotoluene hydrogenation catalysts for toluene diamine synthesis were analyzed by using the descriptor system of MIRA21. In this study, exploratory data analysis (EDA) has been used to understand the relationships between individual variables such as catalyst performance, reaction conditions, catalyst compositions, and sustainable parameters. The results will be applicable in catalyst design, and using machine learning tools will also be possible.
多元数据分析在催化研究中的应用具有重要意义。MIRA21(米什科尔茨排名 21)模型的目的是通过从 15 个不同变量中获取无偏差的可量化数据来对非均相催化剂进行特征描述,从而实现催化剂表征的标准化,并提供一个易于比较、排序和分类催化剂的工具。本工作通过确定影响催化剂比较的基本原理,介绍并从数学上验证了 MIRA21 模型,为催化剂设计提供了支持。使用 MIRA21 的描述符系统对用于甲苯二胺合成的 2,4-二硝基甲苯氢化催化剂的文献数据进行了分析。在这项研究中,使用探索性数据分析(EDA)来理解催化剂性能、反应条件、催化剂组成和可持续性参数等单个变量之间的关系。结果将适用于催化剂设计,并且也可以使用机器学习工具。