Kataoka Hanae, Ushiyama Akira, Akimoto Yoshihiro, Matsubara Sachie, Kawakami Hayato, Iijima Takehiko
From the *Division of Anesthesiology, Department of Perioperative Medicine, Showa University, School of Dentistry, Tokyo, Japan; †Department of Environmental Health, National Institute of Public Health, Saitama, Japan; and ‡Department of Anatomy and §Laboratory for Electron Microscopy, Kyorin University School of Medicine, Tokyo, Japan.
Anesth Analg. 2017 Sep;125(3):874-883. doi: 10.1213/ANE.0000000000002057.
The endothelial surface layer (ESL) regulates vascular permeability to maintain fluid homeostasis. The glycocalyx (GCX), which has a complex and fragile ultrastructure, is an important component of the ESL. Abnormalities of the GCX have been hypothesized to trigger pathological hyperpermeability. Here, we report an integrated in vivo analysis of the morphological and functional properties of the GCX in a vital organ.
We examined the behavior of the ESL and GCX, using both electron microscopy (EM) and intravital microscopy (IVM). We also compared morphological changes in the ESL of mouse skin in a glycosidase-treated and control group. Combined approaches were also used to examine both morphology and function in a lipopolysaccharide-induced septic model and the pathophysiological features of leukocyte-endothelial interactions and in vivo vascular permeability.
Using IVM, we identified an illuminated part of the ESL as the GCX and confirmed our observation using morphological and biochemical means. In septic mice, we found that the GCX was thinner than in nonseptic controls in both an EM image analysis (0.98 ± 2.08 nm vs 70.68 ± 36.36 nm, P< .001) and an IVM image analysis (0.36 ± 0.15 μm vs 1.07 ± 0.39 μm, P< .001). Under septic conditions, syndecan-1, a representative core protein of the GCX, was released into the blood serum at a higher rate in septic animals (7.33 ± 3.46 ng/mL) when compared with controls (below the limit of detection, P< .001). Significant increases in leukocyte-endothelial interactions, defined as the numbers of rolling or firm-sticking leukocytes, and molecular hyperpermeability to the interstitium were also observed after GCX shedding in vivo.
Using IVM, we visualized an illuminated part of the ESL layer that was subsequently confirmed as the GCX using EM. Severe sepsis induced morphological degradation of the GCX, accompanied by shedding of the syndecan-1 core protein and an increase in leukocyte-endothelial interactions affecting the vascular permeability. Our in vivo model describes a new approach to deciphering the relationship between structural and functional behaviors of the GCX.
内皮表面层(ESL)调节血管通透性以维持液体稳态。糖萼(GCX)具有复杂且脆弱的超微结构,是ESL的重要组成部分。GCX异常被认为会引发病理性高通透性。在此,我们报告对重要器官中GCX的形态和功能特性进行的综合体内分析。
我们使用电子显微镜(EM)和活体显微镜(IVM)来检查ESL和GCX的行为。我们还比较了糖苷酶处理组和对照组中小鼠皮肤ESL的形态变化。联合方法也用于检查脂多糖诱导的脓毒症模型中的形态和功能以及白细胞 - 内皮细胞相互作用和体内血管通透性的病理生理特征。
使用IVM,我们将ESL的一个明亮部分鉴定为GCX,并使用形态学和生化方法证实了我们的观察结果。在脓毒症小鼠中,我们发现在EM图像分析(0.98±2.08纳米对70.68±36.36纳米,P <.001)和IVM图像分析(0.36±0.15微米对1.07±0.39微米,P <.001)中,GCX均比非脓毒症对照组薄。在脓毒症条件下,与对照组(低于检测限,P <.001)相比,脓毒症动物中GCX的代表性核心蛋白syndecan - 1以更高的速率释放到血清中(7.33±3.46纳克/毫升)。在体内GCX脱落之后,还观察到白细胞 - 内皮细胞相互作用(定义为滚动或牢固黏附的白细胞数量)显著增加以及对间质的分子高通透性增加。
使用IVM,我们可视化了ESL层的一个明亮部分,随后使用EM证实其为GCX。严重脓毒症诱导GCX的形态学降解,伴随着syndecan - 1核心蛋白的脱落以及影响血管通透性的白细胞 - 内皮细胞相互作用增加。我们的体内模型描述了一种新方法,用于解读GCX的结构和功能行为之间的关系。