Suppr超能文献

探讨糖萼降解后通透性增加的机制:超越糖萼作为结构屏障的作用。

Exploring the mechanism of hyperpermeability following glycocalyx degradation: Beyond the glycocalyx as a structural barrier.

机构信息

Division of Anesthesiology, Department of Perioperative Medicine, School of Dentistry, Showa University, Ota City, Tokyo, Japan.

Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Shinagawa, Tokyo, Japan.

出版信息

PLoS One. 2021 Jun 4;16(6):e0252416. doi: 10.1371/journal.pone.0252416. eCollection 2021.

Abstract

Pathological hyperpermeability is a morbidity involved in various systemic diseases, including sepsis. The endothelial glycocalyx layer (GCX) plays a key role in controlling vascular permeability and could be a useful therapeutic target. The purpose of the present study was to analyze the functional role of the GCX in vascular permeability and to elucidate its role in pathological conditions. First, male C57BL/6J wild-type mice were used as in vivo models to study the effects of sepsis and the pharmacological digestion of glycosaminoglycans (GAGs) on the GCX. Vascular permeability was evaluated using fluorescein isothiocyanate (FITC)-labeled dextran. Second, the changes in gene expression in vascular endothelial cells after GAGs digestion were compared between a control and a septic model using RNA sequencing. In the in vivo study, the glycocalyx was depleted in both the septic model and the group with pharmacological GAGs digestion. FITC-labeled dextran had leaked into the interstitium in the septic group, but not in the other groups. In the in vitro study, histamine decreased the transendothelial electrical resistance (TEER), indicating an increase in permeability. GAGs digestion alone did not change the TEER, and the effect of histamine on the TEER was not enhanced by GAGs digestion. The gene expression profiles after GAGs digestion differed from the control condition, indicating the initiation of signal transduction. In conclusion, we demonstrated that the structural barrier of the GCX does not solely determine the fluid permeability of the endothelial layer, since enzymatic depletion of the GCX did not increase the permeability. The gene expression findings suggest that the digestion of GAGs alone did not induce hyperpermeability either in vitro or in vivo, although sepsis did induce hyperpermeability. While GAGs degradation by itself does not appear to induce hyperpermeability, it may play an important role in initiating signal transductions.

摘要

病理性高通透性是涉及多种系统性疾病的一种病变,包括败血症。内皮糖萼层(GCX)在控制血管通透性方面起着关键作用,可能是一个有用的治疗靶点。本研究的目的是分析 GCX 在血管通透性中的功能作用,并阐明其在病理条件下的作用。首先,雄性 C57BL/6J 野生型小鼠被用作体内模型,以研究败血症和糖胺聚糖(GAG)的药理学消化对 GCX 的影响。使用荧光素异硫氰酸酯(FITC)标记的葡聚糖评估血管通透性。其次,使用 RNA 测序比较 GAG 消化后血管内皮细胞中基因表达的变化在对照和败血症模型之间。在体内研究中,GCX 在败血症模型和药理学 GAG 消化组中均被耗尽。FITC 标记的葡聚糖已渗漏到败血症组的间质中,但在其他组中没有。在体外研究中,组胺降低了跨内皮电阻(TEER),表明通透性增加。单独的 GAG 消化不会改变 TEER,并且 GAG 消化对 TEER 的作用不会因 GAG 消化而增强。GAG 消化后的基因表达谱与对照条件不同,表明信号转导的启动。总之,我们证明了 GCX 的结构屏障并不单独决定内皮层的流体通透性,因为 GCX 的酶促耗竭并没有增加通透性。基因表达研究结果表明,单独消化 GAG 既不会在体外也不会在体内引起通透性增加,尽管败血症确实会引起通透性增加。虽然 GAG 的降解本身似乎不会引起通透性增加,但它可能在启动信号转导中发挥重要作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f0e2/8177458/a0bcd44ae1ba/pone.0252416.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验