Lacorata Guglielmo, Vulpiani Angelo
CNR-Istituto di Scienze dell'Atmosfera e del Clima, Via Monteroni, I-73100, Lecce, Italy and Center of Excellence CETEMPS, Università dell'Aquila, Via Vetoio, I-67100, Coppito (AQ), Italy.
Dipartimento di Fisica, Universitá "La Sapienza," and CNR-ISC, P. le Aldo Moro 2, I-00185 Rome, Italy and Kavli Institute for Theoretical Physics, Beijing 100190, China.
Phys Rev E. 2017 Apr;95(4-1):043106. doi: 10.1103/PhysRevE.95.043106. Epub 2017 Apr 17.
A deterministic multiscale dynamical system is introduced and discussed as a prototype model for relative dispersion in stationary, homogeneous, and isotropic turbulence. Unlike stochastic diffusion models, here trajectory transport and mixing properties are entirely controlled by Lagrangian chaos. The anomalous "sweeping effect," a known drawback common to kinematic simulations, is removed through the use of quasi-Lagrangian coordinates. Lagrangian dispersion statistics of the model are accurately analyzed by computing the finite-scale Lyapunov exponent (FSLE), which is the optimal measure of the scaling properties of dispersion. FSLE scaling exponents provide a severe test to decide whether model simulations are in agreement with theoretical expectations and/or observation. The results of our numerical experiments cover a wide range of "Reynolds numbers" and show that chaotic deterministic flows can be very efficient, and numerically low-cost, models of turbulent trajectories in stationary, homogeneous, and isotropic conditions. The mathematics of the model is relatively simple, and, in a geophysical context, potential applications may regard small-scale parametrization issues in general circulation models, mixed layer, and/or boundary layer turbulence models as well as Lagrangian predictability studies.
引入并讨论了一个确定性多尺度动力系统,作为平稳、均匀和各向同性湍流中相对扩散的原型模型。与随机扩散模型不同,这里的轨迹输运和混合特性完全由拉格朗日混沌控制。通过使用准拉格朗日坐标,消除了运动学模拟中常见的异常“扫掠效应”这一已知缺点。通过计算有限尺度李雅普诺夫指数(FSLE)来精确分析模型的拉格朗日扩散统计量,FSLE是扩散尺度特性的最优度量。FSLE标度指数为判断模型模拟是否与理论预期和/或观测结果一致提供了严格检验。我们数值实验的结果涵盖了广泛的“雷诺数”范围,并表明混沌确定性流可以是非常有效的,且在数值上成本较低的,用于平稳、均匀和各向同性条件下湍流轨迹的模型。该模型的数学相对简单,在地球物理背景下,潜在应用可能涉及大气环流模型、混合层和/或边界层湍流模型中的小尺度参数化问题以及拉格朗日可预报性研究。