Boffetta G, Musacchio S
Department of Physics and INFN, Università di Torino, via P. Giuria 1, 10125 Torino, Italy.
Institute of Atmospheric Sciences and Climate (CNR), 10133 Torino, Italy.
Phys Rev Lett. 2017 Aug 4;119(5):054102. doi: 10.1103/PhysRevLett.119.054102. Epub 2017 Aug 1.
We study the chaoticity and the predictability of a turbulent flow on the basis of high-resolution direct numerical simulations at different Reynolds numbers. We find that the Lyapunov exponent of turbulence, which measures the exponential separation of two initially close solutions of the Navier-Stokes equations, grows with the Reynolds number of the flow, with an anomalous scaling exponent, larger than the one obtained on dimensional grounds. For large perturbations, the error is transferred to larger, slower scales, where it grows algebraically generating an "inverse cascade" of perturbations in the inertial range. In this regime, our simulations confirm the classical predictions based on closure models of turbulence. We show how to link chaoticity and predictability of a turbulent flow in terms of a finite size extension of the Lyapunov exponent.
我们基于不同雷诺数下的高分辨率直接数值模拟,研究了湍流的混沌性和可预测性。我们发现,用于衡量纳维 - 斯托克斯方程两个初始相近解的指数分离的湍流李雅普诺夫指数,随流动的雷诺数增长,具有反常的标度指数,大于基于量纲分析得到的指数。对于大扰动,误差转移到更大、更慢的尺度,在那里它以代数形式增长,在惯性范围内产生扰动的“逆级串”。在这种情况下,我们的模拟证实了基于湍流封闭模型的经典预测。我们展示了如何根据李雅普诺夫指数的有限尺寸扩展来联系湍流的混沌性和可预测性。