Forgia Giovanni La, Cavaliere Davide, Espa Stefania, Falcini Federico, Lacorata Guglielmo
University of Cassino and Southern Lazio, 03043, Cassino, FR, Italy.
CNR, Institute of Marine Sciences, Via Fosso del Cavaliere 100, 00133, Rome, Italy.
Sci Rep. 2022 May 6;12(1):7461. doi: 10.1038/s41598-022-11350-1.
We present a review and a new assessment of the Lagrangian dispersion properties of a 2D model of chaotic advection and diffusion in a regular lattice of non stationary kinematic eddies. This model represents an ideal case for which it is possible to analyze the same system from three different perspectives: theory, modelling and experiments. At this regard, we examine absolute and relative Lagrangian dispersion for a kinematic flow, a hydrodynamic model (Delft3D), and a laboratory experiment, in terms of established dynamical system techniques, such as the measure of (Lagrangian) finite-scale Lyapunov exponents (FSLE). The new main results concern: (i) an experimental verification of the scale-dependent dispersion properties of the chaotic advection and diffusion model here considered; (ii) a qualitative and quantitative assessment of the hydro-dynamical Lagrangian simulations. The latter, even though obtained for an idealized open flow configuration, contributes to the overall validation of the computational features of the Delft3D model.
我们对非定常运动学涡旋规则晶格中二维混沌平流和扩散模型的拉格朗日弥散特性进行了综述和新的评估。该模型代表了一种理想情况,在此情况下可以从理论、建模和实验这三个不同角度分析同一系统。在这方面,我们根据已确立的动力学系统技术,如(拉格朗日)有限尺度李雅普诺夫指数(FSLE)的度量,研究了运动学流、水动力模型(代尔夫特3D模型)和实验室实验中的绝对和相对拉格朗日弥散。新的主要成果包括:(i)对本文所考虑的混沌平流和扩散模型的尺度相关弥散特性进行了实验验证;(ii)对水动力拉格朗日模拟进行了定性和定量评估。后者尽管是针对理想化的开放流配置获得的,但有助于对代尔夫特3D模型的计算特性进行整体验证。