Suppr超能文献

能否使用计算机提取的乳房X线摄影特征来预测导管原位癌中的隐匿性浸润性疾病?

Can Occult Invasive Disease in Ductal Carcinoma In Situ Be Predicted Using Computer-extracted Mammographic Features?

作者信息

Shi Bibo, Grimm Lars J, Mazurowski Maciej A, Baker Jay A, Marks Jeffrey R, King Lorraine M, Maley Carlo C, Hwang E Shelley, Lo Joseph Y

机构信息

Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University School of Medicine, 2424 Erwin Rd, Suite 302, Durham, NC 27705.

Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University School of Medicine, 2424 Erwin Rd, Suite 302, Durham, NC 27705.

出版信息

Acad Radiol. 2017 Sep;24(9):1139-1147. doi: 10.1016/j.acra.2017.03.013. Epub 2017 May 11.

Abstract

RATIONALE AND OBJECTIVES

This study aimed to determine whether mammographic features assessed by radiologists and using computer algorithms are prognostic of occult invasive disease for patients showing ductal carcinoma in situ (DCIS) only in core biopsy.

MATERIALS AND METHODS

In this retrospective study, we analyzed data from 99 subjects with DCIS (74 pure DCIS, 25 DCIS with occult invasion). We developed a computer-vision algorithm capable of extracting 113 features from magnification views in mammograms and combining these features to predict whether a DCIS case will be upstaged to invasive cancer at the time of definitive surgery. In comparison, we also built predictive models based on physician-interpreted features, which included histologic features extracted from biopsy reports and Breast Imaging Reporting and Data System-related mammographic features assessed by two radiologists. The generalization performance was assessed using leave-one-out cross validation with the receiver operating characteristic curve analysis.

RESULTS

Using the computer-extracted mammographic features, the multivariate classifier was able to distinguish DCIS with occult invasion from pure DCIS, with an area under the curve for receiver operating characteristic equal to 0.70 (95% confidence interval: 0.59-0.81). The physician-interpreted features including histologic features and Breast Imaging Reporting and Data System-related mammographic features assessed by two radiologists showed mixed results, and only one radiologist's subjective assessment was predictive, with an area under the curve for receiver operating characteristic equal to 0.68 (95% confidence interval: 0.57-0.81).

CONCLUSIONS

Predicting upstaging for DCIS based upon mammograms is challenging, and there exists significant interobserver variability among radiologists. However, the proposed computer-extracted mammographic features are promising for the prediction of occult invasion in DCIS.

摘要

原理与目的

本研究旨在确定放射科医生评估的乳腺钼靶特征以及使用计算机算法得出的特征,对于仅在粗针活检中显示为导管原位癌(DCIS)的患者隐匿性浸润性疾病是否具有预后价值。

材料与方法

在这项回顾性研究中,我们分析了99例DCIS患者(74例单纯DCIS,25例伴有隐匿性浸润的DCIS)的数据。我们开发了一种计算机视觉算法,能够从乳腺钼靶放大视图中提取113个特征,并将这些特征结合起来预测DCIS病例在确定性手术时是否会升级为浸润性癌。相比之下,我们还基于医生解读的特征构建了预测模型,这些特征包括从活检报告中提取的组织学特征以及由两名放射科医生评估的与乳腺影像报告和数据系统(Breast Imaging Reporting and Data System,BI-RADS)相关的乳腺钼靶特征。使用留一法交叉验证和受试者工作特征曲线分析来评估泛化性能。

结果

使用计算机提取的乳腺钼靶特征,多变量分类器能够区分伴有隐匿性浸润的DCIS和单纯DCIS,受试者工作特征曲线下面积为0.70(95%置信区间:0.59 - 0.81)。包括组织学特征以及由两名放射科医生评估的与BI-RADS相关的乳腺钼靶特征在内的医生解读特征显示出混合结果,只有一名放射科医生的主观评估具有预测性,受试者工作特征曲线下面积为0.68(95%置信区间:0.57 - 0.81)。

结论

基于乳腺钼靶预测DCIS的升级具有挑战性,放射科医生之间存在显著的观察者间差异。然而,所提出的计算机提取的乳腺钼靶特征在预测DCIS隐匿性浸润方面具有前景。

相似文献

1
Can Occult Invasive Disease in Ductal Carcinoma In Situ Be Predicted Using Computer-extracted Mammographic Features?
Acad Radiol. 2017 Sep;24(9):1139-1147. doi: 10.1016/j.acra.2017.03.013. Epub 2017 May 11.
2
Prediction of Occult Invasive Disease in Ductal Carcinoma in Situ Using Deep Learning Features.
J Am Coll Radiol. 2018 Mar;15(3 Pt B):527-534. doi: 10.1016/j.jacr.2017.11.036. Epub 2018 Feb 2.
3
Mixed-Methods Study to Predict Upstaging of DCIS to Invasive Disease on Mammography.
AJR Am J Roentgenol. 2021 Apr;216(4):903-911. doi: 10.2214/AJR.20.23679. Epub 2021 Feb 3.
4
Prediction of Upstaging in Ductal Carcinoma in Situ Based on Mammographic Radiomic Features.
Radiology. 2022 Apr;303(1):54-62. doi: 10.1148/radiol.210407. Epub 2022 Jan 4.
5
Predicting Upstaging of DCIS to Invasive Disease: Radiologists's Predictive Performance.
Acad Radiol. 2020 Nov;27(11):1580-1585. doi: 10.1016/j.acra.2019.12.009. Epub 2020 Jan 27.
6
Mammographic appearance of ductal carcinoma in situ does not reliably predict histologic subtype.
Breast J. 2001 Nov-Dec;7(6):417-21. doi: 10.1046/j.1524-4741.2001.07607.x.

引用本文的文献

2
Classification performance bias between training and test sets in a limited mammography dataset.
PLoS One. 2024 Feb 7;19(2):e0282402. doi: 10.1371/journal.pone.0282402. eCollection 2024.
4
Prediction of Upstaging in Ductal Carcinoma in Situ Based on Mammographic Radiomic Features.
Radiology. 2022 Apr;303(1):54-62. doi: 10.1148/radiol.210407. Epub 2022 Jan 4.
5
Ductal Carcinoma in Situ: State-of-the-Art Review.
Radiology. 2022 Feb;302(2):246-255. doi: 10.1148/radiol.211839. Epub 2021 Dec 21.
6
Anomaly Detection of Calcifications in Mammography Based on 11,000 Negative Cases.
IEEE Trans Biomed Eng. 2022 May;69(5):1639-1650. doi: 10.1109/TBME.2021.3126281. Epub 2022 Apr 21.
8
Mixed-Methods Study to Predict Upstaging of DCIS to Invasive Disease on Mammography.
AJR Am J Roentgenol. 2021 Apr;216(4):903-911. doi: 10.2214/AJR.20.23679. Epub 2021 Feb 3.
10
Ductal Carcinoma In Situ Biology, Language, and Active Surveillance: A Survey of Breast Radiologists' Knowledge and Opinions.
J Am Coll Radiol. 2020 Oct;17(10):1252-1258. doi: 10.1016/j.jacr.2020.03.004. Epub 2020 Apr 9.

本文引用的文献

3
Learning from unbalanced data: a cascade-based approach for detecting clustered microcalcifications.
Med Image Anal. 2014 Feb;18(2):241-52. doi: 10.1016/j.media.2013.10.014. Epub 2013 Nov 12.
5
Evaluation of computer-aided detection and diagnosis systems.
Med Phys. 2013 Aug;40(8):087001. doi: 10.1118/1.4816310.
6
Progression from ductal carcinoma in situ to invasive breast cancer: revisited.
Mol Oncol. 2013 Oct;7(5):859-69. doi: 10.1016/j.molonc.2013.07.005. Epub 2013 Jul 12.
7
Predictors of microinvasion and its prognostic role in ductal carcinoma in situ.
Am J Surg. 2013 Oct;206(4):478-81. doi: 10.1016/j.amjsurg.2013.01.039. Epub 2013 Jun 19.
8
Breast image analysis for risk assessment, detection, diagnosis, and treatment of cancer.
Annu Rev Biomed Eng. 2013;15:327-57. doi: 10.1146/annurev-bioeng-071812-152416. Epub 2013 May 13.
9
10
Computer-aided detection/diagnosis of breast cancer in mammography and ultrasound: a review.
Clin Imaging. 2013 May-Jun;37(3):420-6. doi: 10.1016/j.clinimag.2012.09.024. Epub 2012 Nov 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验