Suppr超能文献

基于乳腺 X 线影像组学特征预测导管原位癌升级。

Prediction of Upstaging in Ductal Carcinoma in Situ Based on Mammographic Radiomic Features.

机构信息

From the Departments of Radiology (R.H., L.J.G., J.Y.L.) and Surgery (J.R.M., L.M.K., T.L., E.S.H.), Duke University Medical Center, Box 3513, Durham, NC 27710; Department of Electrical and Computer Engineering, Pratt School of Engineering, Duke University, Durham, NC (R.H.); School of Life Sciences, Arizona State University, Tempe, Ariz (C.C.M.); Cranfield Forensic Institute, Cranfield University, Cranfield, UK (K.R.); School of Physics and Astronomy, College of Engineering, Mathematics and Physical Sciences, Physics Building, Streatham Campus, University of Exeter, Exeter, UK (N.S.); Cambridge Breast Unit and NIHR Cambridge Biomedical Research Center, Cambridge University Hospitals NHS Trust, Cambridge Biomedical Campus, Cambridge, UK (M.W.); and Netherlands Cancer Institute, Amsterdam, the Netherlands (M.v.O., J.T., J.W.).

出版信息

Radiology. 2022 Apr;303(1):54-62. doi: 10.1148/radiol.210407. Epub 2022 Jan 4.

Abstract

Background Improving diagnosis of ductal carcinoma in situ (DCIS) before surgery is important in choosing optimal patient management strategies. However, patients may harbor occult invasive disease not detected until definitive surgery. Purpose To assess the performance and clinical utility of mammographic radiomic features in the prediction of occult invasive cancer among women diagnosed with DCIS on the basis of core biopsy findings. Materials and Methods In this Health Insurance Portability and Accountability Act-compliant retrospective study, digital magnification mammographic images were collected from women who underwent breast core-needle biopsy for calcifications that was performed at a single institution between September 2008 and April 2017 and yielded a diagnosis of DCIS. The database query was directed at asymptomatic women with calcifications without a mass, architectural distortion, asymmetric density, or palpable disease. Logistic regression with regularization was used. Differences across training and internal test set by upstaging rate, age, lesion size, and estrogen and progesterone receptor status were assessed by using the Kruskal-Wallis or χ test. Results The study consisted of 700 women with DCIS (age range, 40-89 years; mean age, 59 years ± 10 [standard deviation]), including 114 with lesions (16.3%) upstaged to invasive cancer at subsequent surgery. The sample was split randomly into 400 women for the training set and 300 for the testing set (mean ages: training set, 59 years ± 10; test set, 59 years ± 10; = .85). A total of 109 radiomic and four clinical features were extracted. The best model on the test set by using all radiomic and clinical features helped predict upstaging with an area under the receiver operating characteristic curve of 0.71 (95% CI: 0.62, 0.79). For a fixed high sensitivity (90%), the model yielded a specificity of 22%, a negative predictive value of 92%, and an odds ratio of 2.4 (95% CI: 1.8, 3.2). High specificity (90%) corresponded to a sensitivity of 37%, positive predictive value of 41%, and odds ratio of 5.0 (95% CI: 2.8, 9.0). Conclusion Machine learning models that use radiomic features applied to mammographic calcifications may help predict upstaging of ductal carcinoma in situ, which can refine clinical decision making and treatment planning. © RSNA, 2022.

摘要

背景 在术前提高导管原位癌 (DCIS) 的诊断准确性对于选择最佳患者管理策略非常重要。然而,患者可能存在隐匿性浸润性疾病,直到明确的手术才能发现。目的 评估基于核心活检结果诊断为 DCIS 的女性中,乳腺影像学放射组学特征在预测隐匿性浸润性癌中的表现和临床应用价值。材料与方法 本研究经健康保险流通与责任法案 (Health Insurance Portability and Accountability Act) 批准,回顾性分析 2008 年 9 月至 2017 年 4 月在一家医疗机构接受乳腺核心针活检的女性的数字化放大乳腺 X 线摄影图像,这些女性的活检是为了评估钙化灶而进行的,且活检结果诊断为 DCIS。数据库查询针对的是无症状女性,这些女性的钙化灶无肿块、结构扭曲、不对称性密度或可触及的疾病。使用正则化逻辑回归。通过上升率、年龄、病变大小以及雌激素和孕激素受体状态,评估训练集和内部测试集之间的差异,采用 Kruskal-Wallis 或 χ 检验。结果 本研究纳入 700 例经 DCIS(年龄 40-89 岁,平均年龄 59 岁±10 [标准差])诊断的女性,其中 114 例在后续手术中升级为浸润性癌。随机将 700 例女性分为 400 例用于训练集,300 例用于测试集(平均年龄:训练集,59 岁±10;测试集,59 岁±10;P=.85)。提取了 109 个放射组学和 4 个临床特征。使用所有放射组学和临床特征的最佳测试集模型有助于预测升级,其受试者工作特征曲线下面积为 0.71(95%CI:0.62,0.79)。在固定高灵敏度(90%)的情况下,该模型的特异性为 22%,阴性预测值为 92%,优势比为 2.4(95%CI:1.8,3.2)。高特异性(90%)对应的灵敏度为 37%,阳性预测值为 41%,优势比为 5.0(95%CI:2.8,9.0)。结论 应用于乳腺钙化的放射组学特征的机器学习模型可能有助于预测 DCIS 的升级,这可以改进临床决策和治疗计划。 © 2022 RSNA。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1050/8962778/3c3ebaba2039/radiol.210407.va.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验