Division of Molecular Pathology, the Netherlands Cancer Institute, Amsterdam, Netherlands.
Department of Surgery, the Netherlands Cancer Institute - Antoni van Leeuwenhoek, Amsterdam, Netherlands.
Cancer Imaging. 2024 Apr 5;24(1):48. doi: 10.1186/s40644-024-00691-x.
Ductal Carcinoma In Situ (DCIS) can progress to invasive breast cancer, but most DCIS lesions never will. Therefore, four clinical trials (COMET, LORIS, LORETTA, AND LORD) test whether active surveillance for women with low-risk Ductal carcinoma In Situ is safe (E. S. Hwang et al., BMJ Open, 9: e026797, 2019, A. Francis et al., Eur J Cancer. 51: 2296-2303, 2015, Chizuko Kanbayashi et al. The international collaboration of active surveillance trials for low-risk DCIS (LORIS, LORD, COMET, LORETTA), L. E. Elshof et al., Eur J Cancer, 51, 1497-510, 2015). Low-risk is defined as grade I or II DCIS. Because DCIS grade is a major eligibility criteria in these trials, it would be very helpful to assess DCIS grade on mammography, informed by grade assessed on DCIS histopathology in pre-surgery biopsies, since surgery will not be performed on a significant number of patients participating in these trials.
To assess the performance and clinical utility of a convolutional neural network (CNN) in discriminating high-risk (grade III) DCIS and/or Invasive Breast Cancer (IBC) from low-risk (grade I/II) DCIS based on mammographic features. We explored whether the CNN could be used as a decision support tool, from excluding high-risk patients for active surveillance.
In this single centre retrospective study, 464 patients diagnosed with DCIS based on pre-surgery biopsy between 2000 and 2014 were included. The collection of mammography images was partitioned on a patient-level into two subsets, one for training containing 80% of cases (371 cases, 681 images) and 20% (93 cases, 173 images) for testing. A deep learning model based on the U-Net CNN was trained and validated on 681 two-dimensional mammograms. Classification performance was assessed with the Area Under the Curve (AUC) receiver operating characteristic and predictive values on the test set for predicting high risk DCIS-and high-risk DCIS and/ or IBC from low-risk DCIS.
When classifying DCIS as high-risk, the deep learning network achieved a Positive Predictive Value (PPV) of 0.40, Negative Predictive Value (NPV) of 0.91 and an AUC of 0.72 on the test dataset. For distinguishing high-risk and/or upstaged DCIS (occult invasive breast cancer) from low-risk DCIS a PPV of 0.80, a NPV of 0.84 and an AUC of 0.76 were achieved.
For both scenarios (DCIS grade I/II vs. III, DCIS grade I/II vs. III and/or IBC) AUCs were high, 0.72 and 0.76, respectively, concluding that our convolutional neural network can discriminate low-grade from high-grade DCIS.
导管原位癌(DCIS)可能进展为浸润性乳腺癌,但大多数 DCIS 病变永远不会。因此,四项临床试验(COMET、LORIS、LORETTA 和 LORD)测试了对低危导管原位癌患者进行主动监测是否安全(E.S. Hwang 等人,BMJ Open,9: e026797,2019 年,A. Francis 等人,Eur J Cancer. 51: 2296-2303,2015 年,Chizuko Kanbayashi 等人,主动监测低危 DCIS 的国际协作试验(LORIS、LORD、COMET、LORETTA),L.E. Elshof 等人,Eur J Cancer,51,1497-510,2015 年)。低危定义为 I 级或 II 级 DCIS。由于 DCIS 分级是这些试验的主要入选标准,因此如果能够在术前活检中评估 DCIS 分级的基础上,在乳腺 X 线摄影中评估 DCIS 分级,将非常有助于评估这些试验中参与的大量患者,因为这些患者将不会进行手术。
评估卷积神经网络(CNN)在基于乳腺 X 线摄影特征区分高危(III 级)DCIS 和/或浸润性乳腺癌(IBC)与低危(I/II 级)DCIS 方面的性能和临床实用性。我们探讨了 CNN 是否可作为决策支持工具,用于排除高危患者进行主动监测。
在这项单中心回顾性研究中,纳入了 2000 年至 2014 年期间基于术前活检诊断为 DCIS 的 464 例患者。乳腺 X 线摄影图像的采集按患者水平分为两个子集,一个子集用于训练,包含 80%的病例(371 例,681 张图像),另一个子集用于测试,包含 20%的病例(93 例,173 张图像)。在 681 张二维乳腺 X 线片中训练和验证基于 U-Net CNN 的深度学习模型。使用曲线下面积(AUC)、接收器工作特征(ROC)的阳性预测值(PPV)和阴性预测值(NPV)评估测试集中预测高危 DCIS 和/或高危 DCIS 和/或 IBC 与低危 DCIS 的分类性能。
当将 DCIS 分类为高危时,深度学习网络在测试数据集上的阳性预测值(PPV)为 0.40,阴性预测值(NPV)为 0.91,曲线下面积(AUC)为 0.72。当区分高危和/或升级 DCIS(隐匿性浸润性乳腺癌)与低危 DCIS 时,PPV 为 0.80,NPV 为 0.84,AUC 为 0.76。
对于这两种情况(I/II 级 DCIS 与 III 级,I/II 级 DCIS 与 III 级和/或 IBC),AUC 均较高,分别为 0.72 和 0.76,这表明我们的卷积神经网络可以区分低级别和高级别 DCIS。