Suppr超能文献

深度学习在乳腺 X 光片中的应用,以区分低风险和高风险 DCIS,以便患者参与主动监测试验。

Application of deep learning on mammographies to discriminate between low and high-risk DCIS for patient participation in active surveillance trials.

机构信息

Division of Molecular Pathology, the Netherlands Cancer Institute, Amsterdam, Netherlands.

Department of Surgery, the Netherlands Cancer Institute - Antoni van Leeuwenhoek, Amsterdam, Netherlands.

出版信息

Cancer Imaging. 2024 Apr 5;24(1):48. doi: 10.1186/s40644-024-00691-x.

Abstract

BACKGROUND

Ductal Carcinoma In Situ (DCIS) can progress to invasive breast cancer, but most DCIS lesions never will. Therefore, four clinical trials (COMET, LORIS, LORETTA, AND LORD) test whether active surveillance for women with low-risk Ductal carcinoma In Situ is safe (E. S. Hwang et al., BMJ Open, 9: e026797, 2019, A. Francis et al., Eur J Cancer. 51: 2296-2303, 2015, Chizuko Kanbayashi et al. The international collaboration of active surveillance trials for low-risk DCIS (LORIS, LORD, COMET, LORETTA),  L. E. Elshof et al., Eur J Cancer, 51, 1497-510, 2015). Low-risk is defined as grade I or II DCIS. Because DCIS grade is a major eligibility criteria in these trials, it would be very helpful to assess DCIS grade on mammography, informed by grade assessed on DCIS histopathology in pre-surgery biopsies, since surgery will not be performed on a significant number of patients participating in these trials.

OBJECTIVE

To assess the performance and clinical utility of a convolutional neural network (CNN) in discriminating high-risk (grade III) DCIS and/or Invasive Breast Cancer (IBC) from low-risk (grade I/II) DCIS based on mammographic features. We explored whether the CNN could be used as a decision support tool, from excluding high-risk patients for active surveillance.

METHODS

In this single centre retrospective study, 464 patients diagnosed with DCIS based on pre-surgery biopsy between 2000 and 2014 were included. The collection of mammography images was partitioned on a patient-level into two subsets, one for training containing 80% of cases (371 cases, 681 images) and 20% (93 cases, 173 images) for testing. A deep learning model based on the U-Net CNN was trained and validated on 681 two-dimensional mammograms. Classification performance was assessed with the Area Under the Curve (AUC) receiver operating characteristic and predictive values on the test set for predicting high risk DCIS-and high-risk DCIS and/ or IBC from low-risk DCIS.

RESULTS

When classifying DCIS as high-risk, the deep learning network achieved a Positive Predictive Value (PPV) of 0.40, Negative Predictive Value (NPV) of 0.91 and an AUC of 0.72 on the test dataset. For distinguishing high-risk and/or upstaged DCIS (occult invasive breast cancer) from low-risk DCIS a PPV of 0.80, a NPV of 0.84 and an AUC of 0.76 were achieved.

CONCLUSION

For both scenarios (DCIS grade I/II vs. III, DCIS grade I/II vs. III and/or IBC) AUCs were high, 0.72 and 0.76, respectively, concluding that our convolutional neural network can discriminate low-grade from high-grade DCIS.

摘要

背景

导管原位癌(DCIS)可能进展为浸润性乳腺癌,但大多数 DCIS 病变永远不会。因此,四项临床试验(COMET、LORIS、LORETTA 和 LORD)测试了对低危导管原位癌患者进行主动监测是否安全(E.S. Hwang 等人,BMJ Open,9: e026797,2019 年,A. Francis 等人,Eur J Cancer. 51: 2296-2303,2015 年,Chizuko Kanbayashi 等人,主动监测低危 DCIS 的国际协作试验(LORIS、LORD、COMET、LORETTA),L.E. Elshof 等人,Eur J Cancer,51,1497-510,2015 年)。低危定义为 I 级或 II 级 DCIS。由于 DCIS 分级是这些试验的主要入选标准,因此如果能够在术前活检中评估 DCIS 分级的基础上,在乳腺 X 线摄影中评估 DCIS 分级,将非常有助于评估这些试验中参与的大量患者,因为这些患者将不会进行手术。

目的

评估卷积神经网络(CNN)在基于乳腺 X 线摄影特征区分高危(III 级)DCIS 和/或浸润性乳腺癌(IBC)与低危(I/II 级)DCIS 方面的性能和临床实用性。我们探讨了 CNN 是否可作为决策支持工具,用于排除高危患者进行主动监测。

方法

在这项单中心回顾性研究中,纳入了 2000 年至 2014 年期间基于术前活检诊断为 DCIS 的 464 例患者。乳腺 X 线摄影图像的采集按患者水平分为两个子集,一个子集用于训练,包含 80%的病例(371 例,681 张图像),另一个子集用于测试,包含 20%的病例(93 例,173 张图像)。在 681 张二维乳腺 X 线片中训练和验证基于 U-Net CNN 的深度学习模型。使用曲线下面积(AUC)、接收器工作特征(ROC)的阳性预测值(PPV)和阴性预测值(NPV)评估测试集中预测高危 DCIS 和/或高危 DCIS 和/或 IBC 与低危 DCIS 的分类性能。

结果

当将 DCIS 分类为高危时,深度学习网络在测试数据集上的阳性预测值(PPV)为 0.40,阴性预测值(NPV)为 0.91,曲线下面积(AUC)为 0.72。当区分高危和/或升级 DCIS(隐匿性浸润性乳腺癌)与低危 DCIS 时,PPV 为 0.80,NPV 为 0.84,AUC 为 0.76。

结论

对于这两种情况(I/II 级 DCIS 与 III 级,I/II 级 DCIS 与 III 级和/或 IBC),AUC 均较高,分别为 0.72 和 0.76,这表明我们的卷积神经网络可以区分低级别和高级别 DCIS。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdc5/10996224/dc538f85dc30/40644_2024_691_Fig1_HTML.jpg

相似文献

3
Surgical Upstaging Rates for Vacuum Assisted Biopsy Proven DCIS: Implications for Active Surveillance Trials.
Ann Surg Oncol. 2017 Nov;24(12):3534-3540. doi: 10.1245/s10434-017-6018-9. Epub 2017 Aug 9.
4
Ductal Carcinoma In Situ - Quo Vadis?
Chirurgia (Bucur). 2021 Dec;116(5 Suppl):S5-S6.
6
Can Occult Invasive Disease in Ductal Carcinoma In Situ Be Predicted Using Computer-extracted Mammographic Features?
Acad Radiol. 2017 Sep;24(9):1139-1147. doi: 10.1016/j.acra.2017.03.013. Epub 2017 May 11.
7
Prediction of Occult Invasive Disease in Ductal Carcinoma in Situ Using Deep Learning Features.
J Am Coll Radiol. 2018 Mar;15(3 Pt B):527-534. doi: 10.1016/j.jacr.2017.11.036. Epub 2018 Feb 2.
8
Sonography-based multimodal information platform for identifying the surgical pathology of ductal carcinoma in situ.
Comput Methods Programs Biomed. 2024 Mar;245:108039. doi: 10.1016/j.cmpb.2024.108039. Epub 2024 Jan 20.
10
Surgical upstaging rates in patients meeting the eligibility for active surveillance trials.
Jpn J Clin Oncol. 2021 Aug 1;51(8):1219-1224. doi: 10.1093/jjco/hyab082.

引用本文的文献

1
Deep learning-based risk stratification of ductal carcinoma using mammography and abbreviated breast magnetic resonance imaging.
Front Oncol. 2025 Jun 24;15:1587882. doi: 10.3389/fonc.2025.1587882. eCollection 2025.

本文引用的文献

1
Deep learning diagnostics for bladder tumor identification and grade prediction using RGB method.
Sci Rep. 2022 Oct 21;12(1):17699. doi: 10.1038/s41598-022-22797-7.
2
Deep learning in breast imaging.
BJR Open. 2022 May 13;4(1):20210060. doi: 10.1259/bjro.20210060. eCollection 2022.
4
Prediction of Upstaging in Ductal Carcinoma in Situ Based on Mammographic Radiomic Features.
Radiology. 2022 Apr;303(1):54-62. doi: 10.1148/radiol.210407. Epub 2022 Jan 4.
5
AI-enhanced breast imaging: Where are we and where are we heading?
Eur J Radiol. 2021 Sep;142:109882. doi: 10.1016/j.ejrad.2021.109882. Epub 2021 Jul 30.
6
Variability in grading of ductal carcinoma in situ among an international group of pathologists.
J Pathol Clin Res. 2021 May;7(3):233-242. doi: 10.1002/cjp2.201. Epub 2021 Feb 23.
7
Deep learning in breast radiology: current progress and future directions.
Eur Radiol. 2021 Jul;31(7):4872-4885. doi: 10.1007/s00330-020-07640-9. Epub 2021 Jan 15.
8
Prognostic value of histopathological DCIS features in a large-scale international interrater reliability study.
Breast Cancer Res Treat. 2020 Oct;183(3):759-770. doi: 10.1007/s10549-020-05816-x. Epub 2020 Jul 30.
9
Radiomics for precision medicine: Current challenges, future prospects, and the proposal of a new framework.
Methods. 2021 Apr;188:20-29. doi: 10.1016/j.ymeth.2020.05.022. Epub 2020 Jun 3.
10
Predicting Upstaging of DCIS to Invasive Disease: Radiologists's Predictive Performance.
Acad Radiol. 2020 Nov;27(11):1580-1585. doi: 10.1016/j.acra.2019.12.009. Epub 2020 Jan 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验