1 CSIRO Agriculture and Food, Floreat, Western Australia.
2 Rice Research Institute, Sichuan Agricultural University, Chengdu, China.
Mol Plant Microbe Interact. 2017 Sep;30(9):691-700. doi: 10.1094/MPMI-03-17-0057-R. Epub 2017 Jun 21.
The root-infecting necrotrophic fungal pathogen Rhizoctoniasolani causes significant disease to all the world's major food crops. As a model for pathogenesis of legumes, we have examined the interaction of R. solani AG8 with Medicago truncatula. RNAseq analysis of the moderately resistant M. truncatula accession A17 and highly susceptible sickle (skl) mutant (defective in ethylene sensing) identified major early transcriptional reprogramming in A17. Responses specific to A17 included components of ethylene signaling, reactive oxygen species metabolism, and consistent upregulation of the isoflavonoid biosynthesis pathway. Mass spectrometry revealed accumulation of the isoflavonoid-related compounds liquiritigenin, formononetin, medicarpin, and biochanin A in A17. Overexpression of an isoflavone synthase in M. truncatula roots increased isoflavonoid accumulation and resistance to R. solani. Addition of exogenous medicarpin suggested this phytoalexin may be one of several isoflavonoids required to contribute to resistance to R. solani. Together, these results provide evidence for the role of ethylene-mediated accumulation of isoflavonoids during defense against root pathogens in legumes. The involvement of ethylene signaling and isoflavonoids in the regulation of both symbiont-legume and pathogen-legume interactions in the same tissue may suggest tight regulation of these responses are required in the root tissue.
根际侵染性坏死真菌病原菌茄丝核菌会对世界上所有主要粮食作物造成严重病害。作为豆科植物发病机制的模型,我们研究了茄丝核菌 AG8 与蒺藜苜蓿的相互作用。对中度抗性蒺藜苜蓿 A17 品系和高度敏感的镰刀(skl)突变体(乙烯感应缺陷)的 RNAseq 分析,鉴定了 A17 中主要的早期转录重编程。A17 特有的反应包括乙烯信号转导、活性氧代谢和异黄酮生物合成途径的一致上调的成分。质谱分析显示,A17 中积累了异黄酮相关化合物甘草素、芒柄花素、甘草素和大豆苷元。在蒺藜苜蓿根中过表达异黄酮合酶增加了异黄酮的积累和对茄丝核菌的抗性。外源性 medicarpin 的添加表明,这种植物抗毒素可能是几种异黄酮之一,有助于对茄丝核菌的抗性。这些结果共同证明了在豆科植物防御根病原菌过程中,乙烯介导的异黄酮积累在防御中的作用。乙烯信号转导和异黄酮在同一组织中共生体-豆科植物和病原体-豆科植物相互作用的调节中的参与,可能表明在根组织中需要对这些反应进行严格的调节。