Suppr超能文献

肿瘤相关代谢物的细胞表面 G 蛋白偶联受体:与癌症中线粒体功能障碍的直接联系。

Cell-surface G-protein-coupled receptors for tumor-associated metabolites: A direct link to mitochondrial dysfunction in cancer.

机构信息

Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.

Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.

出版信息

Biochim Biophys Acta Rev Cancer. 2017 Aug;1868(1):246-257. doi: 10.1016/j.bbcan.2017.05.003. Epub 2017 May 13.

Abstract

Mitochondria are the sites of pyruvate oxidation, citric acid cycle, oxidative phosphorylation, ketogenesis, and fatty acid oxidation. Attenuation of mitochondrial function is one of the most significant changes that occurs in tumor cells, directly linked to oncogenesis, angiogenesis, Warburg effect, and epigenetics. In particular, three mitochondrial enzymes are inactivated in cancer: pyruvate dehydrogenase (PDH), succinate dehydrogenase (SDH), and 3-hydroxy-3-methylglutaryl CoA synthase-2 (HMGCS2). These enzymes are subject to regulation via acetylation/deacetylation. SIRT3, the predominant mitochondrial deacetylase, directly targets these enzymes for deacetylation and maintains their optimal catalytic activity. SIRT3 is a tumor suppressor, and deacetylation of these enzymes contributes to its biological function. PDH catalyzes the oxidative decarboxylation of pyruvate into acetyl CoA, SDH oxidizes succinate into fumarate, and HMGCS2 controls the synthesis of the ketone body β-hydroxybutyrate. As the activities of these enzymes are decreased in cancer, tumor cells accumulate lactate and succinate but produce less amounts of β-hydroxybutyrate. Apart from their role in cellular energetics, these metabolites function as signaling molecules via specific cell-surface G-protein-coupled receptors. Lactate signals via GPR81, succinate via GPR91, and β-hydroxybutyrate via GPR109A. In addition, lactate activates hypoxia-inducible factor HIF1α and succinate promotes DNA methylation. GPR81 and GPR91 are tumor promoters, and increased production of lactate and succinate as their agonists drives tumorigenesis by enhancing signaling via these two receptors. In contrast, GPR109A is a tumor suppressor, and decreased synthesis of β-hydroxybutyrate as its agonist suppresses signaling via this receptor, thus attenuating the tumor-suppressing function of GPR109A. In parallel with the opposing changes in lactate/succinate and β-hydroxybutyrate levels, tumor cells upregulate GPR81 and GPR91 but downregulate GPR109A. As such, these three metabolite receptors play a critical role in cancer and represent a new class of drug targets with selective antagonists of GPR81 and GPR91 for cancer treatment and agonists of GPR109A for cancer prevention.

摘要

线粒体是丙酮酸氧化、柠檬酸循环、氧化磷酸化、酮体生成和脂肪酸氧化的场所。线粒体功能的衰减是肿瘤细胞中发生的最显著变化之一,与致癌、血管生成、瓦博格效应和表观遗传学直接相关。特别是,三种线粒体酶在癌症中失活:丙酮酸脱氢酶(PDH)、琥珀酸脱氢酶(SDH)和 3-羟-3-甲基戊二酰辅酶 A 合酶-2(HMGCS2)。这些酶可通过乙酰化/去乙酰化进行调节。SIRT3 是主要的线粒体去乙酰化酶,可直接靶向这些酶进行去乙酰化,并保持其最佳催化活性。SIRT3 是一种肿瘤抑制因子,这些酶的去乙酰化有助于其生物学功能。PDH 催化丙酮酸氧化脱羧生成乙酰辅酶 A,SDH 将琥珀酸氧化成富马酸,HMGCS2 控制酮体 β-羟基丁酸的合成。由于这些酶在癌症中的活性降低,肿瘤细胞积累乳酸盐和琥珀酸盐,但产生的 β-羟基丁酸较少。除了在细胞能量学中的作用外,这些代谢物还通过特定的细胞表面 G 蛋白偶联受体作为信号分子发挥作用。乳酸盐通过 GPR81 信号传递,琥珀酸盐通过 GPR91 信号传递,β-羟基丁酸通过 GPR109A 信号传递。此外,乳酸盐激活缺氧诱导因子 HIF1α,琥珀酸盐促进 DNA 甲基化。GPR81 和 GPR91 是肿瘤促进剂,作为其激动剂的乳酸盐和琥珀酸盐的增加产生通过增强这两个受体的信号传导来驱动肿瘤发生。相比之下,GPR109A 是一种肿瘤抑制因子,其激动剂β-羟基丁酸合成减少会抑制该受体的信号传递,从而减弱 GPR109A 的肿瘤抑制功能。与乳酸盐/琥珀酸盐和 β-羟基丁酸水平的相反变化平行,肿瘤细胞上调 GPR81 和 GPR91,但下调 GPR109A。因此,这三种代谢物受体在癌症中起着关键作用,代表了一类新的药物靶点,具有 GPR81 和 GPR91 的选择性拮抗剂可用于癌症治疗,以及 GPR109A 的激动剂可用于癌症预防。

相似文献

5
Effects of high fat diet on GPR109A and GPR81 gene expression.高脂饮食对 GPR109A 和 GPR81 基因表达的影响。
Biochem Biophys Res Commun. 2012 Aug 24;425(2):278-83. doi: 10.1016/j.bbrc.2012.07.082. Epub 2012 Jul 25.

引用本文的文献

2
Therapies in autosomal dominant polycystic kidney disease: beyond tolvaptan.常染色体显性多囊肾病的治疗:超越托伐普坦
Curr Opin Nephrol Hypertens. 2025 Sep 1;34(5):368-374. doi: 10.1097/MNH.0000000000001101. Epub 2025 Jul 4.

本文引用的文献

3
Hydroxy-Carboxylic Acid Receptor Actions in Metabolism.羟基羧酸受体在代谢中的作用。
Trends Endocrinol Metab. 2017 Mar;28(3):227-236. doi: 10.1016/j.tem.2016.11.007. Epub 2017 Jan 10.
7
Mitochondrial Changes in Cancer.癌症中的线粒体变化
Handb Exp Pharmacol. 2017;240:211-227. doi: 10.1007/164_2016_40.
10
Mechanism of antineoplastic activity of lonidamine.氯尼达明的抗肿瘤活性机制。
Biochim Biophys Acta. 2016 Dec;1866(2):151-162. doi: 10.1016/j.bbcan.2016.08.001. Epub 2016 Aug 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验