Suppr超能文献

PreMode通过对蛋白质序列和结构背景进行深度图表示学习来预测错义变体的作用模式。

PreMode predicts mode-of-action of missense variants by deep graph representation learning of protein sequence and structural context.

作者信息

Zhong Guojie, Zhao Yige, Zhuang Demi, Chung Wendy K, Shen Yufeng

机构信息

Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA.

The Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY, USA.

出版信息

Nat Commun. 2025 Aug 5;16(1):7189. doi: 10.1038/s41467-025-62318-4.

Abstract

Accurate prediction of the functional impact of missense variants is important for disease gene discovery, clinical genetic diagnostics, therapeutic strategies, and protein engineering. Previous efforts have focused on predicting a binary pathogenicity classification, but the functional impact of missense variants is multi-dimensional. Pathogenic missense variants in the same gene may act through different modes of action (i.e., gain/loss-of-function) by affecting different aspects of protein function. They may result in distinct clinical conditions that require different treatments. We develop a new method, PreMode, to perform gene-specific mode-of-action predictions. PreMode models effects of coding sequence variants using SE(3)-equivariant graph neural networks on protein sequences and structures. Using the largest-to-date set of missense variants with known modes of action, we show that PreMode reaches state-of-the-art performance in multiple types of mode-of-action predictions by efficient transfer-learning. Additionally, PreMode's prediction of G/LoF variants in a kinase is consistent with inactive-active conformation transition energy changes. Finally, we show that PreMode enables efficient study design of deep mutational scans and can be expanded to fitness optimization of non-human proteins with active learning.

摘要

准确预测错义变体的功能影响对于疾病基因发现、临床遗传诊断、治疗策略和蛋白质工程至关重要。先前的努力主要集中在预测二元致病性分类上,但错义变体的功能影响是多维度的。同一基因中的致病性错义变体可能通过影响蛋白质功能的不同方面,以不同的作用模式(即功能获得/丧失)发挥作用。它们可能导致需要不同治疗方法的不同临床状况。我们开发了一种新方法PreMode,用于进行基因特异性作用模式预测。PreMode使用SE(3)等变图神经网络对蛋白质序列和结构的编码序列变体的影响进行建模。使用迄今为止最大的具有已知作用模式的错义变体数据集,我们表明PreMode通过高效的迁移学习在多种作用模式预测中达到了当前的最优性能。此外,PreMode对激酶中G/LoF变体的预测与非活性-活性构象转变能量变化一致。最后,我们表明PreMode能够实现深度突变扫描的高效研究设计,并且可以通过主动学习扩展到非人类蛋白质的适应性优化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cfa/12325985/787ffea09381/41467_2025_62318_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验