Suppr超能文献

低温通过霍普夫分岔使蓝藻中的生物钟失效。

Low temperature nullifies the circadian clock in cyanobacteria through Hopf bifurcation.

机构信息

Faculty of Design, Kyushu University, Fukuoka, 815-8540, Japan.

Department of Electrical Engineering and Bioscience, Graduate School of Sciences and Engineering, Waseda University, TWIns, Tokyo 162-8480, Japan.

出版信息

Proc Natl Acad Sci U S A. 2017 May 30;114(22):5641-5646. doi: 10.1073/pnas.1620378114. Epub 2017 May 17.

Abstract

Cold temperatures lead to nullification of circadian rhythms in many organisms. Two typical scenarios explain the disappearance of rhythmicity: the first is oscillation death, which is the transition from self-sustained oscillation to damped oscillation that occurs at a critical temperature. The second scenario is oscillation arrest, in which oscillation terminates at a certain phase. In the field of nonlinear dynamics, these mechanisms are called the Hopf bifurcation and the saddle-node on an invariant circle bifurcation, respectively. Although these mechanisms lead to distinct dynamical properties near the critical temperature, it is unclear to which scenario the circadian clock belongs. Here we reduced the temperature to dampen the reconstituted circadian rhythm of phosphorylation of the recombinant cyanobacterial clock protein KaiC. The data led us to conclude that Hopf bifurcation occurred at ∼19 °C. Below this critical temperature, the self-sustained rhythms of KaiC phosphorylation transformed to damped oscillations, which are predicted by the Hopf bifurcation theory. Moreover, we detected resonant oscillations below the critical temperature when temperature was periodically varied, which was reproduced by numerical simulations. Our findings suggest that the transition to a damped oscillation through Hopf bifurcation contributes to maintaining the circadian rhythm of cyanobacteria through resonance at cold temperatures.

摘要

低温会导致许多生物的昼夜节律消失。有两种典型的情况可以解释节律的消失:第一种是振荡死亡,即自激振荡过渡到在临界温度下发生的阻尼振荡;第二种是振荡停止,即在某个相位下振荡终止。在非线性动力学领域,这些机制分别称为 Hopf 分岔和不变圆上的鞍结分岔。尽管这些机制导致了临界温度附近明显的动力学性质,但昼夜节律钟属于哪种情况尚不清楚。在这里,我们降低温度以抑制重组蓝藻时钟蛋白 KaiC 的磷酸化的重建昼夜节律。数据使我们得出结论,Hopf 分岔发生在约 19°C。在这个临界温度以下,KaiC 磷酸化的自维持节律转变为阻尼振荡,这是 Hopf 分岔理论所预测的。此外,当温度周期性变化时,我们在临界温度以下检测到了共振振荡,这可以通过数值模拟再现。我们的发现表明,通过 Hopf 分岔过渡到阻尼振荡有助于通过共振在低温下维持蓝藻的昼夜节律。

相似文献

1
Low temperature nullifies the circadian clock in cyanobacteria through Hopf bifurcation.低温通过霍普夫分岔使蓝藻中的生物钟失效。
Proc Natl Acad Sci U S A. 2017 May 30;114(22):5641-5646. doi: 10.1073/pnas.1620378114. Epub 2017 May 17.
5
Diversity of KaiC-based timing systems in marine Cyanobacteria.海洋蓝细菌中基于KaiC的计时系统的多样性。
Mar Genomics. 2014 Apr;14:3-16. doi: 10.1016/j.margen.2013.12.006. Epub 2014 Jan 3.

引用本文的文献

7
Temperature compensation through kinetic regulation in biochemical oscillators.生化振荡器中通过动力学调节实现温度补偿。
Proc Natl Acad Sci U S A. 2024 May 21;121(21):e2401567121. doi: 10.1073/pnas.2401567121. Epub 2024 May 15.
10
The seasons within: a theoretical perspective on photoperiodic entrainment and encoding.内在的季节:光周期计时和编码的理论视角。
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2024 Jul;210(4):549-564. doi: 10.1007/s00359-023-01669-z. Epub 2023 Sep 2.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验