Leech Gregor, Melcher Lauren, Chiu Michelle, Nugent Maya, Juliano Shirlaine, Burton Lily, Kang Janet, Kim Soo Ji, Roy Sourav, Farhadi Leila, Ross Jennifer L, Das Moumita, Rust Michael J, Robertson-Anderson Rae M
Department of Physics and Biophysics, University of San Diego, San Diego, CA, USA.
School of Mathematical Sciences, Rochester Institute of Technology, Rochester, NY, USA.
Nat Commun. 2025 Jan 2;16(1):176. doi: 10.1038/s41467-024-55645-5.
Active biological molecules present a powerful, yet largely untapped, opportunity to impart autonomous regulation of materials. Because these systems can function robustly to regulate when and where chemical reactions occur, they have the ability to bring complex, life-like behavior to synthetic materials. Here, we achieve this design feat by using functionalized circadian clock proteins, KaiB and KaiC, to engineer time-dependent crosslinking of colloids. The resulting material self-assembles with programmable kinetics, producing macroscopic changes in material properties, via molecular assembly of KaiB-KaiC complexes. We show that colloid crosslinking depends strictly on the phosphorylation state of KaiC, with kinetics that are synced with KaiB-KaiC complexing. Our microscopic image analyses and computational models indicate that the stability of colloidal super-structures depends sensitively on the number of Kai complexes per colloid connection. Consistent with our model predictions, a high concentration stabilizes the material against dissolution after a robust self-assembly phase, while a low concentration allows for oscillatory material structure. This work introduces the concept of harnessing biological timers to control synthetic materials; and, more generally, opens the door to using protein-based reaction networks to endow synthetic systems with life-like functional properties.
活性生物分子为实现材料的自主调控提供了一个强大但在很大程度上尚未开发的机会。由于这些系统能够稳健地发挥作用,调控化学反应发生的时间和地点,它们有能力为合成材料赋予复杂的、类似生命的行为。在此,我们通过使用功能化的生物钟蛋白KaiB和KaiC来设计胶体的时间依赖性交联,从而实现了这一设计壮举。通过KaiB-KaiC复合物的分子组装,所得材料以可编程的动力学进行自组装,导致材料性质发生宏观变化。我们表明,胶体交联严格依赖于KaiC的磷酸化状态,其动力学与KaiB-KaiC复合同步。我们的微观图像分析和计算模型表明,胶体超结构的稳定性敏感地取决于每个胶体连接上Kai复合物的数量。与我们的模型预测一致,高浓度在经历强大的自组装阶段后使材料稳定,防止溶解,而低浓度则允许材料结构振荡。这项工作引入了利用生物定时器来控制合成材料的概念;更广泛地说,为使用基于蛋白质的反应网络赋予合成系统类似生命的功能特性打开了大门。