Suppr超能文献

一种用于表观基因组功能分类的计算方法。

A computational approach for the functional classification of the epigenome.

作者信息

Gandolfi Francesco, Tramontano Anna

机构信息

Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185 Rome, Italy.

Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Viale Regina Elena 291, 00161 Rome, Italy.

出版信息

Epigenetics Chromatin. 2017 May 15;10:26. doi: 10.1186/s13072-017-0131-7. eCollection 2017.

Abstract

BACKGROUND

In the last decade, advanced functional genomics approaches and deep sequencing have allowed large-scale mapping of histone modifications and other epigenetic marks, highlighting functional relationships between chromatin organization and genome function. Here, we propose a novel approach to explore functional interactions between different epigenetic modifications and extract combinatorial profiles that can be used to annotate the chromatin in a finite number of functional classes. Our method is based on non-negative matrix factorization (NMF), an unsupervised learning technique originally employed to decompose high-dimensional data in a reduced number of meaningful patterns. We applied the NMF algorithm to a set of different epigenetic marks, consisting of ChIP-seq assays for multiple histone modifications, Pol II binding and chromatin accessibility assays from human H1 cells.

RESULTS

We identified a number of chromatin profiles that contain functional information and are biologically interpretable. We also observe that epigenetic profiles are characterized by specific genomic contexts and show significant association with distinct genomic features. Moreover, analysis of RNA-seq data reveals that distinct chromatin signatures correlate with the level of gene expression.

CONCLUSIONS

Overall, our study highlights the utility of NMF in studying functional relationships between different epigenetic modifications and may provide new biological insights for the interpretation of the chromatin dynamics.

摘要

背景

在过去十年中,先进的功能基因组学方法和深度测序使得组蛋白修饰及其他表观遗传标记得以大规模定位,突出了染色质组织与基因组功能之间的功能关系。在此,我们提出一种新方法,用于探索不同表观遗传修饰之间的功能相互作用,并提取可用于将染色质注释为有限数量功能类别的组合图谱。我们的方法基于非负矩阵分解(NMF),这是一种最初用于将高维数据分解为数量减少的有意义模式的无监督学习技术。我们将NMF算法应用于一组不同的表观遗传标记,这些标记包括针对多种组蛋白修饰的ChIP-seq分析、来自人类H1细胞的Pol II结合和染色质可及性分析。

结果

我们鉴定出了一些包含功能信息且具有生物学可解释性的染色质图谱。我们还观察到表观遗传图谱具有特定的基因组背景特征,并与不同的基因组特征显示出显著关联。此外,对RNA-seq数据的分析表明,不同的染色质特征与基因表达水平相关。

结论

总体而言,我们的研究突出了NMF在研究不同表观遗传修饰之间功能关系方面的效用,并可能为染色质动力学的解释提供新的生物学见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3929/5433140/780e526afc25/13072_2017_131_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验