Suppr超能文献

SU-D-BRB-03:通过PET/MR成像的小波图像融合和纹理分析预测肿瘤预后

SU-D-BRB-03: Prediction of Tumor Outcomes Through Wavelet Image Fusion and Texture Analysis of PET/MR Imaging.

作者信息

Vallières M, Freeman C R, Skamene S R, Naqa I El

机构信息

McGill University Health Center, Montreal, Québec.

出版信息

Med Phys. 2012 Jun;39(6Part3):3615. doi: 10.1118/1.4734675.

Abstract

PURPOSE

To investigate the combination of PET/MR image features for the early prediction of tumor metastases to the lungs in soft-tissue sarcoma (STS) cancer.

METHODS

A dataset of 24 patients with histologically proven STS was used in this study. All patients underwent pre-treatment FDG-PET and MR scans, which comprised of T1 and T2-fat suppression weighted (T2FS) sequences. The patients had a median follow-up period of 36 months (range: 6-69 months). Eight patients developed metastases to the lungs.Tumors were contoured on the T2FS scans by an expert physician. Fusion of the co-registered FDG-PET/MR scans was performed using a wavelet transform technique. A SUV feature (SUVmax) from the FDG-PET scans and 6 texture features from the co-occurrence matrix of the fused scans were extracted from the tumor region and correlation with the clinical endpoint of metastases to the lungs was investigated. Statistical analysis was performed using Spearman's rank correlation (rs) and multivariable logistic regression.

RESULTS

The highest univariate prediction was found on FDG-PET/T2FS fused scans analyzed using the texture features "Sum-Mean" and "Variance". These two fused scan-texture feature combinations reached rs = -0.6838 (p = 0.0003). In comparison, SUVmax reached rs = -0.6257 (p = 0.0011). The highest multivariate prediction was found with the following 3- parameter model: -3.15SUVmax - 5.37FDG-PET/T2FS-Sum-Mean + 0.57*FDG-PET/T1-Variance. This model reached rs = 0.7977 (p = 0.000005).

CONCLUSIONS

This work indicates the potential of PET/MR texture features of tumors as complementary metrics to existing prognostic factors. Substantial improvement in terms of prediction of metastases to the lungs in STS cancer was found with the combination of texture features from fused FDG-PET/MR scans. Potentially, this could improve patients' outcomes by allowing better adaptation of treatments. Future work will involve evaluation of the robustness of the proposed method and validation on a larger set of patients.

摘要

目的

研究PET/MR图像特征组合用于软组织肉瘤(STS)癌肺转移早期预测的情况。

方法

本研究使用了一个包含24例经组织学证实为STS患者的数据集。所有患者均接受了治疗前的FDG-PET和MR扫描,其中MR扫描包括T1加权和T2脂肪抑制加权(T2FS)序列。患者的中位随访期为36个月(范围:6 - 69个月)。8例患者发生了肺转移。由一名专家医生在T2FS扫描上勾勒出肿瘤轮廓。使用小波变换技术对配准后的FDG-PET/MR扫描进行融合。从肿瘤区域提取FDG-PET扫描的一个SUV特征(SUVmax)以及融合扫描共生矩阵的6个纹理特征,并研究其与肺转移临床终点的相关性。使用Spearman等级相关性(rs)和多变量逻辑回归进行统计分析。

结果

在使用纹理特征“Sum-Mean”和“Variance”分析的FDG-PET/T2FS融合扫描中发现了最高的单变量预测。这两种融合扫描纹理特征组合的rs = -0.6838(p = 0.0003)。相比之下,SUVmax的rs = -0.6257(p = 0.0011)。在以下三参数模型中发现了最高的多变量预测:-3.15SUVmax - 5.37FDG-PET/T2FS-Sum-Mean + 0.57*FDG-PET/T1-Variance。该模型的rs = 0.7977(p = 0.000005)。

结论

这项工作表明肿瘤的PET/MR纹理特征作为现有预后因素的补充指标具有潜力。通过融合FDG-PET/MR扫描的纹理特征组合,在STS癌肺转移预测方面有显著改善。这可能通过更好地调整治疗方案来改善患者的预后。未来的工作将包括评估所提出方法的稳健性并在更大的患者群体上进行验证。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验