Suppr超能文献

一种基于联合FDG-PET与MRI纹理特征的放射组学模型,用于预测四肢软组织肉瘤的肺转移。

A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities.

作者信息

Vallières M, Freeman C R, Skamene S R, El Naqa I

机构信息

Medical Physics Unit, McGill University, 845 Rue Sherbrooke O, Montreal QC H3A 0G4, Canada.

出版信息

Phys Med Biol. 2015 Jul 21;60(14):5471-96. doi: 10.1088/0031-9155/60/14/5471. Epub 2015 Jun 29.

Abstract

This study aims at developing a joint FDG-PET and MRI texture-based model for the early evaluation of lung metastasis risk in soft-tissue sarcomas (STSs). We investigate if the creation of new composite textures from the combination of FDG-PET and MR imaging information could better identify aggressive tumours. Towards this goal, a cohort of 51 patients with histologically proven STSs of the extremities was retrospectively evaluated. All patients had pre-treatment FDG-PET and MRI scans comprised of T1-weighted and T2-weighted fat-suppression sequences (T2FS). Nine non-texture features (SUV metrics and shape features) and forty-one texture features were extracted from the tumour region of separate (FDG-PET, T1 and T2FS) and fused (FDG-PET/T1 and FDG-PET/T2FS) scans. Volume fusion of the FDG-PET and MRI scans was implemented using the wavelet transform. The influence of six different extraction parameters on the predictive value of textures was investigated. The incorporation of features into multivariable models was performed using logistic regression. The multivariable modeling strategy involved imbalance-adjusted bootstrap resampling in the following four steps leading to final prediction model construction: (1) feature set reduction; (2) feature selection; (3) prediction performance estimation; and (4) computation of model coefficients. Univariate analysis showed that the isotropic voxel size at which texture features were extracted had the most impact on predictive value. In multivariable analysis, texture features extracted from fused scans significantly outperformed those from separate scans in terms of lung metastases prediction estimates. The best performance was obtained using a combination of four texture features extracted from FDG-PET/T1 and FDG-PET/T2FS scans. This model reached an area under the receiver-operating characteristic curve of 0.984 ± 0.002, a sensitivity of 0.955 ± 0.006, and a specificity of 0.926 ± 0.004 in bootstrapping evaluations. Ultimately, lung metastasis risk assessment at diagnosis of STSs could improve patient outcomes by allowing better treatment adaptation.

摘要

本研究旨在开发一种基于FDG-PET和MRI纹理的联合模型,用于软组织肉瘤(STSs)肺转移风险的早期评估。我们研究了通过结合FDG-PET和MR成像信息创建新的复合纹理是否能更好地识别侵袭性肿瘤。为实现这一目标,我们对51例经组织学证实的四肢STSs患者进行了回顾性评估。所有患者在治疗前均进行了FDG-PET和MRI扫描,包括T1加权和T2加权脂肪抑制序列(T2FS)。从单独的(FDG-PET、T1和T2FS)以及融合的(FDG-PET/T1和FDG-PET/T2FS)扫描的肿瘤区域中提取了九个非纹理特征(SUV指标和形状特征)和四十一个纹理特征。FDG-PET和MRI扫描的体积融合采用小波变换实现。研究了六个不同提取参数对纹理预测价值的影响。使用逻辑回归将特征纳入多变量模型。多变量建模策略包括在以下四个步骤中进行不平衡调整的自助重采样,最终构建预测模型:(1)特征集缩减;(2)特征选择;(3)预测性能估计;(4)模型系数计算。单变量分析表明,提取纹理特征时的各向同性体素大小对预测价值影响最大。在多变量分析中,就肺转移预测估计而言,从融合扫描中提取的纹理特征明显优于从单独扫描中提取的纹理特征。使用从FDG-PET/T1和FDG-PET/T2FS扫描中提取的四个纹理特征的组合可获得最佳性能。在自助评估中,该模型的受试者操作特征曲线下面积为0.984±0.002,灵敏度为0.955±0.006,特异性为0.926±0.004。最终,在STSs诊断时进行肺转移风险评估可通过更好地调整治疗方案改善患者预后。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验