Suppr超能文献

SU-E-I-90:用于光学相干断层扫描中血管腔和支架支柱检测的快速稳健算法。

SU-E-I-90: Fast and Robust Algorithm Towards Vessel Lumen and Stent Strut Detection in Optical Coherence Tomography.

作者信息

Mandelias K, Tsantis S, Karnabatidis D, Katsakiori P, Mihailidis D, Nikiforidis G, Kagadis G C

机构信息

University of Patras, Rion, Ahaia.

Technological Educational Institute of Athens, Athens, Attiki.

出版信息

Med Phys. 2012 Jun;39(6Part5):3645-3646. doi: 10.1118/1.4734807.

Abstract

PURPOSE

Optical Coherence Tomography (OCT) is a catheter-based imaging method that employs near-infrared light to produce high-resolution cross-sectional intravascular images. We propose a new segmentation technique for automatic lumen area extraction and stent strut detection in intravascular OCT images for the purpose of quantitative analysis of neointimal hyperplasia (NIH).

METHODS

Two clinical dataset of frequency-domainOCT scans of the human femoral artery were analyzed. First, a segmentation method based on Fuzzy C-Means (FCM) clustering and Wavelet Transform (WT) was applied towards inner luminal contour extraction. Subsequently, stent strut positions were detected by utilizing metrics derived from the local maxima of the wavelet transform into the FCM membership function.

RESULTS

The inner lumen contour and the position of stent strut were extracted with very high accuracy. Compared with manual segmentation by an expert physician, the automatic segmentation had an average overlap value of 0.917 ± 0.065 for all OCT images included in the study. The strut detection procedure successfully identified 6.7 ± 0.5 struts for each OCT image.

CONCLUSIONS

A new fast and robust automatic segmentation technique combining FCM and WT for lumen border extraction and strut detection in intravascular OCT images was designed and implemented. The proposed algorithm may be employed for automated quantitative morphological analysis of in-stent neointimal hyperplasia.

摘要

目的

光学相干断层扫描(OCT)是一种基于导管的成像方法,它利用近红外光生成高分辨率的血管内横截面图像。为了对新生内膜增生(NIH)进行定量分析,我们提出了一种新的分割技术,用于在血管内OCT图像中自动提取管腔面积和检测支架支柱。

方法

分析了两个关于人股动脉频域OCT扫描的临床数据集。首先,将基于模糊C均值(FCM)聚类和小波变换(WT)的分割方法应用于内腔轮廓提取。随后,通过利用从小波变换的局部最大值导出的度量到FCM隶属函数中来检测支架支柱位置。

结果

内腔轮廓和支架支柱位置被高精度地提取。与专家医生的手动分割相比,对于研究中包含的所有OCT图像,自动分割的平均重叠值为0.917±0.065。支柱检测程序为每个OCT图像成功识别出6.7±0.5个支柱。

结论

设计并实现了一种新的快速且稳健的自动分割技术,该技术结合了FCM和WT用于血管内OCT图像中的管腔边界提取和支柱检测。所提出的算法可用于支架内新生内膜增生的自动定量形态分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验